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Abstract

Writing software for Wireless Sensor Networks (WSN) is hard, as programmers have to write
robust, distributed, highly concurrent applications on extremely resource limited devices. Virtual
machines offer among other things support for high-level object-oriented languages, dynamic
memory management and protection, hardware abstraction, and efficient code distribution. The
main challenge is to ensure good programming tools and a minimal footprint for the virtual
machine to match the limited amounts of memory available on typical WSN platforms.

This thesis describes the design and implementation of Darjeeling, a virtual machine modelled
after the Java VM and capable of executing a substantial subset of the Java language, but designed
specifically to run on 8- and 16-bit microcontrollers with 2-10kB of RAM.

The Darjeeling VM uses a 16- rather than a 32-bit architecture, which is more efficient on the
targeted platforms. Darjeeling features a novel memory organisation with strict separation of
reference from non-reference types that eliminates the need for run-time type analysis in the
underlying precise garbage collector. Darjeeling also includes a linked stack model that provides
light-weight threads, compacting garbage collection, and synchronization.

The VM has been implemented on three different platforms, and was evaluated with micro
benchmarks as well as a real-world monitoring application. The latter includes a pure Java
implementation of the Collection Tree Protocol (CTP) conveniently programmed as a set of
cooperating threads, and a reimplementation of an existing environmental monitoring application.
The results show that Darjeeling is a viable solution for deploying large-scale, heterogeneous
sensor networks.
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1 INTRODUCTION

A Wireless Sensor Network (WSN) is a collection of inexpensive, low-power, spatially distributed
computers, called 'nodes', communicating wirelessly through an ad-hoc network and cooperating
towards some common goal, usually the aggregation of sensor information. Such networks can be
used for a wide array of applications such as environmental monitoring, security, cattle
management, and battlefield surveillance to name a few.

Experience shows that writing software for sensor networks is quite hard. Programmers have to
write modular, distributed software, often with high levels of concurrency, on extremely resource-
constrained devices. Operating in the intersection of these four problem domains with tools that
offer little in the areas of debugging, error detection and recovery, and dynamic memory
management makes the task even more daunting.

It has been proposed that virtual machines (VM) may help to alleviate these problems. Virtual
machines are a well known and powerful means of abstracting underlying computer hardware
from an application, allowing portability across platforms without recompilation. Virtual machines
also allow the implementation in software of certain desirable features, such as memory protection,
that the hardware does not provide.

The Java virtual machine is an attractive candidate for use in sensor networks because it provides a
solid concurrency model, dynamic memory management with garbage collection, memory
protection through type safety, and support for object-oriented software engineering. Additionally
the Java language enjoys widespread popularity and familiarity among programmers.

Unfortunately virtual machines introduce a non-trivial overhead in both space and time. The run-
time interpretation of instructions causes programs to run slower by at least an order of magnitude.
The VM itself requires a certain fixed amount of memory to operate, and interpreted programs are
generally more memory demanding due to limitations on memory layout.

The primary goal of this thesis is to examine the impact, both positive and negative, of using a
high-level language (Java) for wireless sensor networks software development. A secondary goal
is to improve on existing work regarding virtual machine design for constrained devices. Both
these goals are approached by designing, implementing, and evaluating an experimental virtual
machine.

This thesis describes Darjeeling, a virtual machine capable of executing a large subset of the Java
language on micro controllers. Its key features are efficient multi threading using ad-hoc stack
space allocation, a custom 16-bit architecture to increase performance and decrease stack space
usage, a novel approach for precise compacting garbage collection, and support for on-the-fly
loading and unloading of modules. A real-world application in the form of a well known many-to-
one routing algorithm imlemented in Java is demonstrated and evaluated.

The remainder of this thesis is structured as follows. Some background on wireless sensor
networks, virtual machines, and previous work is presented in Section 2, followed by the design
consideration of the Darjeeling VM in Section 3. Next, the implementation details regarding the
linking model, memory organisation, byte code analysis, and execution model are presented in
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Section 4. Section 5 presents the micro-benchmark performance evaluation for the Darjeeling VM
on three target platforms, and Section 6 presents the evaluation of a well-known routing protocol
and the re-implementation of a real-world monitoring application that uses it. Conclusions are
presented in Section 7.

The source code to Darjeeling, together with documentation and publications are made available at
http://darjeeling.sourceforge.net.
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2 BACKGROUND

The work presented in this thesis combines the fields of wireless sensor networks and virtual
machine design. Section 2.1 provides some background information on WSNs, and Section 2.2
motivates the use of virtual machines in sensor networks. Section 2.3 discusses reported VMs
relevant to WSNs and embedded devices. Finally conclusions are drawn in Section 2.4.

2.1 Wireless sensor networks

Wireless sensor networks have been deployed to adress a wide range of problems. At Great Duck
Island in Maine, USA, a network was deployed to monitor the nesting behavior of sea birds [19].
This is an example typical for environmental monitoring applications where individual nodes
gather local sensor data, nesting burrow usage in this case, and relay the information back to an
internet gateway via an ad-hoc wireless network.

Other deployments such as the virtual fencing application described in [7] use mobile nodes. To
control the grazing patterns of cows physical barriers (fences) are required to restrict their
movement. To allow for a more dynamic, and in the long run potentially more cost-effective
management, a sensor network was used to influence the movement of the animals. The individual
cows were equipped with nodes that track their position using GPS and apply a negative stimulus
in the form of an electric shock when some virtual line is crossed. The network also relays this
tracking information back to the researchers for further study by behavioral scientists.

These and other applications require networks that are both low cost and low power. The low cost
aspect is important because it allows for more sampling points in space, and therefore more data,
at a given hardware budget. They should also be low power so as to maximise the network lifetime
when a finite energy source (such as battery) is used. In line with these goals most sensor node
hardware platforms use cheap, low-power micro controller units (MCU) [8, 20]. These devices are
severely limited in terms of processing power and memory capacity, typically having between
2-10kB RAM. An example of a popular hardware platform is the TMote Sky [20], shown in
Figure 2.1.

Communication between nodes happens via a wireless link, wich consumes a significant amount
of energy when transmitting or receiving. Protocols have been developed that are optimised for
extremely low power consumption at very low data rates. Media Access Control (MAC) layers use
duty-cycling to reduce energy consumption due to idle listening [35, 36]. This means that the radio
and MCU are in deep sleep most of the time and wake up only periodically to exchange
information. The range of the on-board radios is such that most networks require multi-hop routing
protocols. Because the spatial distribution and network topology is usually unknown these
protocols must be able to establish links and routes ad-hoc.

With a data rate of a single measurement every few minutes most of the power consumption of a
network is due to the deep sleep requirements of the MCU and radio, and the cost of packet

13



Figure 2.1: The TMote Sky sensor node platform

transmission and reception. The MCU is 'on' only a fraction of the time, so even though it
consumes in the order of 10 times more power in this state the 'on time' is not a major contributor
to the total energy consumption. This means that real-time considerations aside, execution speed is
not a hard constraint when designing WSN software. This allows for a trade off of execution speed
for the benefits of a virtual machine.

A WSN software stack is made up several components that operate seperately and concurrently.
The communication module contains a MAC layer and one or more routing layers, on top of which
run one or more applications. Even in the simplest scenario, that of environmental monitoring, two
routing layers are required. First, sensor measurements must be trafficed efficiently to one or more
so-called 'sink nodes' and second, code updates must be pushed out into the network for bug fixes
or retasking. Both these tasks require separate applications to run on top of the routing protocols as
well.

Various WSN middleware solutions address the need for concurrency in different ways.
cooperative multi-threading model is used by Fleck OS (FOS) [7]. The drawback of this model
however is that each thread requires stack space to be pre-allocated to accomodate the worst-case
usage. When many threads are needed this memory overhead may become prohibitively large.
TinyOS [16] uses an event-based concurrency model aided by an extension on the C programming
language, and Contiki [9] proposes a form of stackless continuations called 'proto threads'. Neither
of these models is very intuitive however and especially event-based programming has received
much criticism for its complexity and opaqueness.

2.2 Motivation for virtual machines

Despite the resource limitations of the microcontrollers used in typical sensor nodes it is an
attractive idea to run a Virtual Machine (VM) to take advantage of the portability and flexibility
that it provides. A virtual machine abstracts the underlying platform, offering a standard
programming interface across a range of target platforms. This is important in the WSN context as
we are moving towards heterogeneous networks, by design (i.e. two-tier architectures), or simply
as a consequence of long-running systems evolving over time (e.g., adding new nodes after some
years deployment). The support for dynamic loading of VM byte code provides programmers with
a great deal of flexibility as it allows for updating and extending a running application. Again, the
long lifetime of sensor networks make this a crucial feature as bug fixing and application-level
retasking are inevitable when applications are deployed for more than a few weeks.

Another type of benefit that a virtual machine provides is the ease of programming that comes
with it. The Java Virtual Machine (JVM) for example provides programmers with the luxuries of
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an object oriented language, dynamic memory management and protection, threads, and exception
handling, none of which are provided by the underlying hardware. In addition, the JVM provides a
safe execution environment ensuring that errors are handled gracefully and cannot take the entire
software stack down as in the case for execution on bare hardware. This enhances the robustness
of the software executing in the field, and more importantly reduces the code development and
testing efforts considerably. Java generally provides quicker deployment and increased
maintainability over C/C++ [6]. This helps bring down the total cost of ownership (TCO) of a
sensor network not only during initial development, but also post-deployment.

Virtual machines provide a means of overcoming the challenges of fault tolerance, cost and
heterogeneity. Low-cost embedded systems often have no user interface and are deployed in
remote or dangerous areas so must run autonomously throughout their complete lifetime, i.e. for
several years. Microcontrollers lack advanced features such as a memory management unit and a
single faulty process can potentially take down the entire software system. Virtual machines help
to alleviate these problems by providing strong checking, memory management and error handling
services that improve robustness and allow software faults to be handled appropriately before they
become failures.

The benefits of virtual machines for sensor networks have been recognised by the research
community [14, 15, 26, 28] and the general consensus is that the price to be paid, that is the loss in
execution speed, is of minor importance for the majority of WSN applications performing simple
monitoring tasks. However despite this, today most applications are still coded in low-level
programming languages, like NesC for TinyOS. The reasons are, firstly, most implementations of
virtual machines have compromised on the supported functionality to reduce the memory footprint
so that it can run within a few kB of RAM provided by typical sensor node platforms. Secondly,
the state-of-the-art virtual machines are all proprietary implementations, which burdens the
acceptance by the research community as it hampers the integration of experimental sensors,
protocols, and algorithms.

2.3 Existing virtual machines

Several VM implementations have been reported in the wireless sensor networks research
community, and different VMs strike a different balance between flexibility, supported features,
and resource (memory) usage. Some of the VMs are open source projects (e.g., Maté [15] and
leJOS [29]), while others are completely proprietary (e.g., Sentilla [26] and Java Card [32]. In
general we can distinguish two competing philosophies: application-specific vs. generic VMs,
which we will discuss next.

Application-Specific Virtual Machines (ASVM) [16] are optimised for a specific problem domain
and abstract common operations as instructions in a virtual machine. Programs tend to be very
small, in the order of ten to a hundred bytes, which makes reprogramming nodes in a network very
energy efficient. Examples of ASVMs are Maté [15] and VMSCRIPT [22]. VM* [14] is a Java
VM project that advocates synthesis of virtual machines tailored for specific applications, and is in
that sense a form of ASVM. It supports incremental linking to allow the VM to grow as new
features are needed, which overcomes the limited flexibility associated with most ASVMs.
Unfortunately this project is closed source.

The class of generic virtual machines for sensor networks provides execution of some higher-level
programming language, usually Java or a subset. This approach provides greater flexibility, for
example to support application-level retasking, at a cost of generally larger program sizes and
more complex interpreters. In this context the Connected Limited Devices Configuration (CLDC)
specification [30] is very relevant as it describes a minimal standard Java platform for small,
resource-constrained devices that have some form of wireless connectivity. Although often
understood as describing cell phones, lately the specification has been increasingly mentioned in
the context of wireless sensor networks. The specification is for minimal hardware requirements
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defined as a 16- or 32-bit processor with 160kB to 512kB of memory available to the JVM, which
in terms of memory is almost two orders of magnitude greater than what typical sensor nodes
provide.

Sun Microsystems has introduced several technologies related to Java on embedded devices. The
Squawk project [28] provides an open-source, CLDC compatible virtual machine, largely written
in the Java language. The project introduces the concept of a split VM architecture where class
loading and verification is done off-line, resulting in more compact executables and lower memory
footprint. The Squawk VM runs on top of the Sun SPOT platform, and ARM based sensor node
with 512kB of RAM and 4MB of flash. This makes Squawk too large for our targeted platforms.

The Java Card [32] virtual machine targets 16-bit microcontrollers with approximately 2kB of
RAM. Although it does not support features such as multi threading or even garbage collection, it
is significant for proposing a 16-bit architecture and modified instruction set to execute Java
programs more efficiently on micro controller platforms.

A recent generic VM is the leJOS [29] project, which features an open-source JVM that can
execute on memory constrained devices, and has been demonstrated for wireless sensor networks
in [10]. Unfortunately it does not support garbage collection amongst other essential features, so it
is not suitable for more complex applications.

2.4 Conclusions

Wireless sensor network software has to be robust and preferably modular, is highly concurrent,
and runs on extremely resource-constrained devices. Middleware should help programmers
achieve these goals. Existing operating systems allow for memory-efficient concurrency but fail to
provide an easy, intuitive, and robust programming interface.

Virtual machines provide a host of features that increase ease of programming, modularity, and
robustness. They provide an intuitive programming model that abstracts away the details of
hardware implementations, thus dealing with the heterogeneity problem. The size of compiled
programs also tends to be small, allowing for more efficient code updates. These VMs have to run
on resource-limited devices however, so the overhead that they impose should not be prohibitively
large.

Reported virtual machines are either ASVMs that severly limit the programmer's flexibility, closed
source VMs that are not available to the research community, or severely limited in terms of
features. As a result little is known about how using a Java virtual machine for instance affects the
properties of a deployment in terms of power consumption, memory footprint, and ease of
development. Although the benefits of virtual machines are clear and generally accepted the cost
involved remains unquantified.
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3 DESIGN

Having identified the void for an open-source feature-rich virtual machine for resource-poor
platforms like sensor nodes, we have designed a new virtual machine called the Darjeeling Virtual
Machine (DVM) that is similar to the JVM and can execute a considerable subset of the Java
language. Our virtual machine is designed from the ground up for devices with small heaps and
minimises memory consumption wherever possible.

3.1 Requirements

The primary design goal for Darjeeling is to provide execution of complex Java applications on a
range of different sensor network architectures. This requires memory efficiency, portability, and
some means to load and unload libraries and applications.

3.1.1 Memory efficiency

In order to allow execution of meaningful applications Darjeeling should be memory efficient, as
the small heap sizes of our target platforms are the main factor in constraining program
complexity.

Threads especially should have as little overhead as possible, so that preemptive threading can be
used freely by application programmers. Since we also want to allow multiple applications (each
comprising a number of threads) running concurrently on a single node there must be little per-
application overhead.

3.1.2 Portability

A virtual machine is middleware that sits in between the operating system (if any) and running
applications. Many such operating systems exist for wireless sensor networks that provide
different concurrency models such as event-driven or thread oriented. There are also different
MCUs to deal with, most notably the ATmega and MSP430 series, with different memory types
and sizes, and different addressing schemes. Therefore Darjeeling must be portable across all these
MCUs and operating systems.

3.1.3 Application loading

There are many cases in which it is useful to reprogram nodes after they have been deployed in the
field. This can be to fix bugs, introduce new functionality, or completely retask the network. While
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some testbeds allow reprogramming directly through wired means it is usually more practical to
support loading applications over the air.

A virtual machine can allow multiple applications to coexist safely on a single node. Replacing
separate applications is much more efficient than reprogramming an entire image. Darjeeling must
therefore allow the loading and unloading, and starting and stopping of applications without
having to reset the node or otherwise affect its running state.

3.2 Motivation for a new VM

The Java Virtual Machine (JVM) [17] is designed around 32-bit architectures with typically
megabytes of memory. Certain design decisions that make sense for such platforms might not be
ideal in the context of sensor networks where common MCUs use either 8- or 16-bit architectures
and memory is measured in kilobytes.

3.2.1 Linking model

The first issue we address is that of the Java class file format and the dynamic linking model. Java
classes are linked dynamically with a per-class granularity. This allows for great flexibility, but
comes at a significant cost. Java class files are generally large as they contain linking information
in the form of string literals. A second problem with the dynamic loading technique is that it
requires some linking information to be kept in RAM at run-time, introducing a non-trivial
memory overhead for each loaded class.

Other embedded JVM efforts have implemented conversion tools that perform static linking
between groups of class files to either reduce or completely remove the need for string literals in
their respective file formats, greatly reducing code footprint and eliminating the per-class memory
overhead [2, 14, 28, 31]. The trade off is the loss of reflection and some flexibility in the linking
model. This seems reasonable, especially as it allows for an efficient implementation where the
byte code and class definitions can be kept in flash memory. Therefore Darjeeling uses a tool
called the infuser that performs static linking of groups of class files.

3.2.2 Stack width

In traditional Java VMs values are stored in 32-bit slots. This is true for the operand stack, local-
and global variables, and inside objects. It allows for quick access on 32-bit architectures, but is
impractical for memory-constrained 8- and 16-bit platforms. On these platforms references are
typically 16 bits wide so storing them in 32-bit slots results in a 100% memory overhead. This
applies also to smaller integer types such as byte, boolean and short.

The Java Card virtual machine [31] addresses the memory overheads for narrow hardware
platforms by using a more suitable 16-bit slot width. This requires a modified instruction set
because Java automatically widens smaller integer types to a 32-bit int and does not contain
instructions to modify 16-bit values directly. The 16-bit architecture also requires byte code
analysis to optimise int based arithmetic to short arithmetic where this is possible. We have
chosen to follow Java Card and use a 16-bit architecture. Arithmetic expressions are optimised by
the Infuser tool.

3.2.3 Garbage compaction

Frequent allocation and deallocation of objects causes the heap to become fragmented with holes
that are too small to accommodate common allocation requests, essentially wasting space. This is
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highly undesirable on our memory-constrained target platforms, so a compacting garbage
collection algorithm is required.

Compacting garbage collectors first mark all objects in use, then slide them to one side of the heap,
eliminating any holes. After compaction, references to relocated objects have to be updated in the
running state of the program. In order for this to work it must be possible to identify which
elements of the running states are references, and which ones are not so that no integer values are
modified by mistake. It is possible to include type information about class fields and global
variables in the executable file. Types of values on the operand stack and in local variables,
however, may change dynamically so some mechanism must be in place to determine the types of
these elements at run time.

One option is to simply type the stack and local variables as the program runs. Additional type
information is kept on the stack and book-keeping is done when slots are accessed with push,
pop, load, and store primitives. This method, called `type tagging', is elegant in neither space
nor time. An improvement is to do type analysis as the mark phase starts. The byte code is
annotated post-compile with typing information called stack maps [1] at selected addresses. The
VM can then infer the types of the stack elements at the current address in relatively few iterations
from the closest precalculated state. This method is widely used but has the drawbacks that extra
typing information must be added, which increases the code footprint, and that the type inference
mechanism increases code complexity and reduces performance.

We have instead chosen an unconventional approach that strictly separates reference and non-
reference types on the operand stack and in local variables. This solution comes at a cost of a
single byte per activation record (see Section 4.3.2) and several extra instructions to manage the
operand stack, but avoids any runtime handling of type information. We also separate references
from non-references in objects, which allows for uniform treatment of stack and heap and
simplifies the garbage collector even further.
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4 IMPLEMENTATION

Above we have shown that meeting the portability, memory-efficiency, and application-level
retasking goals required us to let go of the JVM specification, because they are not compatible
with the capabilities of the targeted, resource-poor processing platforms. Consequently we have
chosen an approach where we designed our Darjeeling VM (DVM) to be similar enough so as to
allow execution of post-processed Java programs, but with unique features that contribute to a low
memory footprint. In particular we adopted a 16-bit architecture with corresponding instruction
set, a static linking model, a linked stack architecture for memory-efficient multi threading, and a
novel memory layout that separates reference types from others simplifying garbage collection. In
this section we detail the implementation aspects of the Darjeeling VM, which has been ported to
three target platforms with different microcontrollers (ATmega128, MSP430), operating systems
(TinyOS, Contiki, FOS), and radios (CC1000, CC2420, nRF905).

4.1 Linking model

The Darjeeling runtime, the virtual machine, is responsible for executing Java programs. These
programs comprise components such as class- and method definitions, executable byte code
blocks, and string literals. These building blocks, which we shall call entities, are traditionally
stored in Java .class files.

In the Java world, individual .class files are treated much like small libraries that are loaded on
demand at run time. Classes contain a so-called constant pool that contains linking information.
Any entity that is referenced by the class has an entry in the constant pool. A new instruction for
instance, carries an index into the constant pool where information about the class to be
instantiated can be found.

Darjeeling uses a split VM architecture [28] where class loading, byte code verification, and
transformation is done off-line by a tool called the Infuser. Multiple class files are linked statically
into loadable modules called infusions, which cooperate to form running programs. Named
references are replaced with a numbering scheme so that keeping a run-time constant pool in
memory is no longer necessary. Infusions are typically libraries such as the base infusion
containing the java.lang package, or applications such as the CTP routing protocol application
discussed in Section 6. Infusions `flatten' a hierarchy of Java classes into lists of entities, and can
import other infusions and reference the entities therein.

The process is shown in Figure 4.1. A series of Java source files is fed into a standard Java
compiler producing a corresponding set of class files. These class files are then input to the Infuser
tool along with one or more infusion header files. A call to the infuser typically produces two files:
a Darjeeling Infusion (.di) file, and a Darjeeling Infusion Header file (.dih). Informally
speaking, the infusion file contains the class definitions and byte code, and the headers contain
linking information. Together these two files form the infusion.
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Figure 4.1: Infusion process.

The identifiers that are found in the .di files are called local IDs and consist of two parts, a local
infusion ID and an entity ID. The first element refers to an item in the import list of an infusion.
The second element refers to an entity within that imported infusion. Local IDs are stored as a
two-byte tuple. Figure 4.2 shows how a method is resolved at runtime. In this example a method
inside the `motor' infusion is called from the `car' infusion. First, the local ID is partially resolved
into a global ID by looking up the infusion in the import list. A global ID is a tuple of a pointer to
a loaded infusion, and an entity ID. The method itself can now be retrieved from the infusion's
method list.

Figure 4.2: Local ID resolution.

4.2 The Infuser tool

The linking scheme described in the previous section, as well as our 16-bit architecture and strict
separation of reference from non-reference types requires an off-line tool that transforms java
.class files into infusions. The infuser is around 15,500 source lines of Java code, about two-
thirds of the entire Darjeeling code base. It can be used from the command line or as an Ant (Java
build system) task.

The Infuser reads .class and .dih files and creates an internal tree representing the different
classes, methods and other entities. After the loading phase a number of processing steps are
performed on this tree, each implemented using the visitor design pattern, ensuring code
modularity and extensibility. Operations include a verification step to make sure no unsupported
functionality is used, a linking step, byte code transformation (described more in depth in section
4.6), and finally output generation.

Byte code is represented internally as a linked list of instruction handles, each containing a single
instruction. Handles have links to direct predecessors and successors and store inferred type
information. An analysis framework is in place that performs type inference using an algorithm
similar to the one described in [31], and can do live analysis on local variables.
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The .di file format is organised as a flattened tree with relative pointers from parent to child
nodes, so that the contents can be read easily from both program flash or ram. Each block has a
type ID so that new block types can be added easily, making the format extensible.

4.3 Memory organisation

Memory management in Darjeeling was implemented with two goals in mind; memory efficiency
and separation of types. Our linked stack architecture described in Section 4.3.1 enables threads
with low fixed overhead. Sections 4.3.2 and 4.3.3 describe how reference and non-reference types
are separated on the operand stack and in heap objects, respectively.

4.3.1 Linked stack

Each method call produces a new stack frame (activation record) as a context for the execution of
that method. Java stack frames contain a local variable section, various bookkeeping values, and
an operand stack. Bookkeeping includes a return address, stack pointer, and various context
variables such as a pointer to the method that is being executed.

Traditionally stack frames are allocated on a single, pre-allocated space. The local variable section
of a frame is located at the start of a frame, so that the frame of the caller can be overlapped with
the callee. The last n active slots (parameters) on the operand stack of the caller overlap with the
the first n slots (method arguments) of the callee. This allows for efficient passing of parameters
between the two methods.

The drawback of the traditional method is that the size of this pre-allocated stack is equal to the
worst-case requirement, introducing a severe memory overhead for each running thread. For
Darjeeling we chose to implement linked stack management [3] where stack frames are allocated
ad-hoc from the heap. This allows threads to grow and shrink as the program runs, allowing for
light-weight threads. An obvious drawback is that each stack frame requires a heap chunk header,
but we note that the benefits of dynamic stack allocation greatly outweigh this overhead (see
Section 5).

A comparison between the two layouts is shown in Figure 4.3. A typical JVM stack frame
organisation is shown on the left, our linked stack model is shown on the right. Our stack frames
consist of the same elements, but the local variable section is split into two parts for reference and
non-reference types to help with garbage collection and compaction (see below).

Because stack frames are allocated on the heap, and because the local variables of our stack frames
are split into two separate sections, it is impossible to directly overlap the operand stack of the
caller with the the local variables of the callee. One option is to copy these values from operand
stack of the caller to the local variables of the callee, but this is not efficient because it would
duplicate values and waste space. Instead, we added specialised instructions to let the caller access
the operand stack of the callee directly for retrieving arguments.

4.3.2 Double-ended stack

Darjeeling uses two operand stacks instead of one. One of the stacks holds the reference types, the
other is for non-reference types. The stacks are allocated within the same memory space, the size
of which can be easily obtained by byte code analysis. Two stack pointers are used; one is
initialised to the lower bound of the stack space, the other to the upper bound. The first grows
upwards, the other downwards. This is shown in Figure 4.4. When the root set needs to be marked,
the collector can simply traverse the reference stack and directly mark each heap object it
encounters. This reduces the complexity of the root set marking phase to O(n) and eliminates any
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(a) JVM (b) DVM

Figure 4.3: Stack layout comparison.

false positives. During compaction, every time an object is moved, the collector can traverse all
the reference stacks and update the pointers in place.

Figure 4.4: Double-ended stack.

The cost of this technique is that each stack frame now contains two stack pointers instead of one.
In our stack frames these are stored using a single byte indicating the number of elements on each
of the stacks, so that the overhead is just a single byte per stack frame.

In order for this technique to work some modification must be made to the byte code instruction
set to replace stack manipulation instructions like pop with ipop and apop for integer and
reference pop respectively. How this is accomplished is described in Section 4.6.

4.3.3 Objects

Strict separation of integer and reference types has also been applied to the layout of objects in
memory. Figure 4.5 shows three objects allocated on the heap. The dotted line indicates the
partition between the integer and reference fields. Darjeeling packs the integer fields of objects on
the heap so that fields of type byte or short occupy only 1 or 2 bytes respectively instead of the
standard 4.
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Figure 4.5: Object layout.

The instructions getfield and setfield have been replaced by the new instructions
getfield_<T> and setfield_<T>, where T is one of int, short, byte or ref. The
offset of the field inside the integer- or reference block is stored as an immediate value in the
instruction. Since there are different getfield and setfield instructions for each data type
the VM knows how many bytes to read at the given offset. Indexing into the reference fields is
slightly more involved, as the offset of the reference field block must first be obtained. This is
achieved by retrieving the size of the integer field block from the class definition which is stored in
flash.

In our example B is a child class of A. It is always possible to substitute an instance of class B for
an instance of its parent class A, as inheritance dictates, because the integer- and reference blocks
are handled separately.

4.4 Execution

One of the benefits of Java programming over C-based middleware is that it provides an intuitive,
preemptive multithreading concurrency model. Darjeeling implements preemptive multithreading
in a very simple and straightforward way, allowing it to run on top of event-based, thread-based,
and protothread-based concurrency models and even on systems that do not provide concurrency
at all. In essence the running virtual machine is a polling loop that alternates between a
dj_vm_schedule() and dj_exec_run() call. The former decides which thread should be
run next, and the latter executes the specified number of atomic JVM instructions.

The time-slicing is not timer-based, although it is possible to call dj_exec_run() with a large
number of instructions to execute and call dj_exec_breakExecution() on a timer to
interrupt the thread after a fixed interval. Listing 4.1 shows how Darjeeling runs on top of FOS.
The dj_vm_getSleepTime() method returns the number of milliseconds until one of the
threads has to be woken up. If there are one or more threads currently in the running state this
method returns zero.

In case of the TinyOS port, if there are no threads to schedule immediately, a single-shot timer is
used to renew the virtual machine task in the future. On FOS we use the API call
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while (dj_vm_countLiveThreads(vm)>0)
{

dj_vm_schedule(vm);
if (vm->currentThread!=NULL) dj_exec_run(RUNSIZE);
sleep = dj_vm_getSleepTime(vm);
if (sleep==0)

fos_thread_yield();
else

fos_thread_sleep(sleep);
}

Listing 4.1: The Darjeeling main loop on FOS.

// javax.fos.Leds.setLed()
void javax_fos_Leds_void_setLed_byte_bool()
{

// pop arguments off the stack
// in reverse order
int16_t on = dj_exec_stackPopShort();
int16_t id = dj_exec_stackPopShort();
// set the appropriate leds
if (id==0) fos_leds_blue(on);
if (id==1) fos_leds_green(on);
if (id==2) fos_leds_red(on);

}

Listing 4.2: A native method implementation.

fos_thread_sleep(). Both methods allow the underlying OS to put the MCU into low-
power mode.

4.4.1 Native code

In order for Java programs to access the node hardware, native libraries, and the virtual machine
state, some mechanism for calling native methods is required. The Java language provides a
native keyword for methods to signal that the implementation of that method is implemented
natively rather than in Java. The infuser tool can generate C stubs from these Java method
declarations for the application programmer to implement. These are then linked into the final
image and programmed into the node.

Listing 4.2 shows the native implementation of the javax.fleck.Leds.setLed() method.
Parameter passing is done through the operand stack, in reverse order. A native method may
optionally return a value by pushing it onto the operand stack.

Some interaction with native hardware requires a Java thread to block until some event has
occurred. A common example is waiting for a message from the MAC layer. On FOS the MAC
send() and receive() methods simply block the calling thread. TinyOS provides the
SplitControl mechanism that generates an event when the send operation has been completed, and
receive is an event that may occur at any time.
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private static Object receiveLock = new Object();
// blocks until a message arrives
public static native byte[] _receive();
public static byte[] receive()
{

synchronized(receiveLock)
{

return _receive();
}

}

Listing 4.3: Locking on the Java side.

We expose these mechanisms using two stage locking. On the Java side a synchronized block
is used to ensure that only one thread at a time may be blocked for an event from the underlying
OS. If multiple threads call the same method they will be blocked waiting for the first thread rather
than for the OS event. Listing 4.3 shows how this is implemented for the receive() method on
the MAC layer.

The receiveLock monitor prevents multiple Java threads trying to process the same radio
packet when a receive event occurs. A thread calling the native method _receive will be
blocked immediately and another thread is scheduled for execution. When a receive event occurs
the previously blocked thread is reactivated.

4.5 Infusion management

Applications and libraries executed by Darjeeling are stored as infusions. Infusion files (.di)
typically reside in program flash. When an infusion is loaded by the VM it will execute its class
initialisers, and if the infusion has an entry point method, it will create a new thread and execute
that method in the new thread. Although in traditional JVMs the class loading is lazy and
determines the order in which class initialisers are run, Darjeeling runs them in the order in which
they appear in the file.

While loading new infusions is fairly trivial, unloading them is more involved since the VM must
be left in a correct state after the infusion has been removed. Any references to elements from the
infusion to be unloaded in the running state of the various threads may cause faulty behaviour
when those elements can no longer be accessed.

Before an infusion may be unloaded any threads that are executing method implementations from
that infusion must first be killed. This still leaves objects on the heap that are instances of classes
defined in the unloaded infusion. These objects cannot be kept as they can no longer be accessed,
their access methods have been unloaded, but they also can not be deallocated because there might
be references to them from running threads. For example, when an application, passes an event
handler to a routing protocol and later gets unloaded, the event handler object persists because the
routing protocol still holds a reference to it.

We considered killing all threads that have direct or indirect references to such `bad' objects but
decided against it because it would not only involve implementing another marking algorithm, but
also because in our example it would cause the routing protocol to be killed as well. We chose a
solution that allows the application programmer to decide how to deal with such cases.
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Figure 4.6: byte code transformation pipeline.

Instances of classes that are unloaded are marked `invalid' by the unloading mechanism. Accessing
these objects causes the VM to throw a ClassUnloadedException. This exception can be
caught, allowing the application to remove the reference. If it is not caught the thread will
terminate due to an uncaught exception. Either way, the VM is left in a correct and predictable
state.

4.6 Byte code transformation

Darjeeling has a custom byte code instruction set that is optimised for 16-bit arithmetic, supports a
double-ended stack architecture, and has typed versions of field get and set methods. It is the job
of the infuser tool to map Java byte code to Darjeeling byte code. There is not always a one-to-one
mapping between instructions and the transformation may be context sensitive. In these cases the
generated Darjeeling instruction depends on the input types of the source Java instruction. To
allow for these context sensitive transformations type inference has to be performed to calculate
the input types for each instruction. The transformation pipeline is shown in Figure 4.6. The next
sections discuss its various stages.

4.6.1 Import and type inference

First the Java byte code is imported and translated into corresponding Darjeeling byte code. Any
instructions that cannot be translated right away, such as stack manipulation operations, are
replaced with place holders.

A type inference algorithm determines the states of the local variables and operand stack before
and after each instruction. These states are called a handle's pre- and post state. The post state can
be calculated from the pre state by simulating the effect the instruction has on the operand stack
and local variables. The pre state of an instruction handle can be calculated by merging the post
states of all its incoming handles.

Usually type inference is used for byte code verification and only the types of values on the
operand stack are inferred. The infuser instead tracks which instruction handle produced each
value and infers the type from there. This allows for multi-pass optimisation with type information
being updated automatically when instructions are replaced.

public static short max(short a, short b)
{

return a>b?a:b;
}

Listing 4.4: The max() function.
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pc in out instruction pre stack post stack

0 1 iload_0 short
1 0 2 iload_1 short short, short
2 1 3, 5 if_icmple(5) short, short
3 2 4 iload_0 short
4 3 6 goto(6) short short
5 2 6 iload_1 short
6 4, 5 ireturn short

Table 4.1: Java byte code for max().

pc in out instruction pre stack post stack

0 1 sload_0 short
1 0 2 sload_1 short short, short
2 1 3, 5 if_icmple(5) short, short
3 2 4 sload_0 short
4 3 6 goto(6) short short
5 2 6 sload_1 short
6 4, 5 sreturn short

Table 4.2: Darjeeling byte code for max() after import

Consider Listing 4.4, a function from the Math class that calculates the maximum of two shorts.
The corresponding annotated Java byte code is shown in Table 4.1. The first column shows the
offset of each instruction, the set of incoming and outgoing offsets (direct predecessors and direct
successors) are shown in columns two and three. The pre- and post-stack columns show the logical
types of the operand stack. We distinguish between logical types, the `actual' type of the value, and
the physical type. In the JVM short values are automatically widened to int, so although only
shorts are used in our example their physical types are actually int.

The resulting Darjeeling byte code, after this phase, is shown in Table 4.2. The iload and
istore instructions have been replaced by their short-sized counterparts, and since the method
returns a value of type short the ireturn instruction has been replaced with sreturn. The
if_icmple instruction, which compares two integer values, has not been optimised to its short
form yet. This is done in the next phase.

4.6.2 Arithmetic optimisation

The JVM automatically widens small integer types to int, and all arithmetic is done using 32-bit
intermediate values and instructions. To match the native integer size of most micro controller
platforms Darjeeling can work with the short data type directly, only widening values of type
boolean and byte. The infuser optimises Java byte code to use short-typed instructions where
this is possible, but must be careful when optimising arithmetic to make sure that expression
semantics are preserved. The arithmetic optimisation stage performs this transformation.

Many Java instructions that operate on int types have short-typed counterparts in the DVM
instruction set. The iadd instruction pops two 32-bit integer values off the operand stack, adds
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them, and pushes the result back onto the stack. It is important to realise that the result is implicitly
truncated to 32-bit. Darjeeling has a short-sized version called sadd that performs the same
calculation, only using 16-bit values. Because sadd truncates the result it cannot always be
substituted for iadd even if both input types are short, because the addition might generate
overflow that is relevant for later computation.

Our algorithm starts by annotating the input byte code with two flags. The gen flag is set for every
instruction handle that might generate overflow. The keep flag is set for instructions whose
overflow should be preserved. An instruction that has both flags set cannot be safely optimised.
The keep flag is generated by looking for instructions that require overflow to be preserved for one
or more of their input values, and setting the keep flag on the instruction(s) that generate them.

short a, b, c, d;
int e = a + b + c + d;

(a) Java source. (b) Annotated byte code.

Figure 4.7: Addition in Java and corresponding byte code.

Consider the Java fragment in Listing 4.7(a). The corresponding annotated byte code is shown in
Figure 4.7(b). All the addition instructions have the gen flag set because they take short values as
input, and this can generate overflow. The backwards pointing arrows show which instructions
cause the gen flag to be set on which of their inputs. The istore_4 instruction for instance
requires any overflow generated by the last iadd to be preserved. In this state the algorithm is
done immediately because there are no instructions that can be optimised.

short a, b, c, d;
short e = (short)(a + b + c + d);

Figure 4.8: Truncated addition.

Now consider a slightly altered version of the addition chain as shown in Listing 4.8. In this case
the result of the addition is explicitly casted to short. The corresponding code is shown in Figure
4.9(a). Because the i2s instruction removes any overflow from the last iadd it no longer has the
keep flag set. The algorithm can now safely replace it with an sadd because both input types are
short and overflow is irrelevant.

Whenever an instruction is optimised the change may affect the keep flag on its inputs and gen
flags on the instructions that use its output. The result of optimising the iadd instruction is shown
in Figure 4.9(b). By applying this mechanism iteratively the entire expression can be optimised to
use only short instructions, as shown in Figure 4.9(c) and Figure 4.9(d).

4.6.3 Cast insertion

The arithmetic optimisation stage cares only about logical types of values, not about the physical
types in which they are wrapped. Recall the example in Figure 4.7(b), where the iadd instructions
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(a) (b)

(c) (d)

Figure 4.9: Arithmetic optimisation for the truncated addtion example.

require int typed inputs. The sload instructions produce short values on the 16-bit stack, so
these must be widened to 32-bit ints using an s2i instruction. The byte code listings before and
after the transformation are shown in Figure 4.10(a) and 4.10(a), respectively.

(a) (b)

Figure 4.10: Cast insertion.
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Unified Reference stack Integer stack

v2:short, v1:short ... v2:short, v1:short
v2:short, v1:ref v1:ref v2:short
v2:ref, v1:short v2:ref v1:short
v2:ref, v1:ref v2:ref, v1:ref ...

Table 4.3: Stack contents at dup_x1.

Unified DVM instruction

v2:short, v1:short idup_x1
v2:short, v1:ref adup
v2:ref, v1:short idup
v2:ref, v1:ref adup_x1

Table 4.4: Replacement instructions dup_x1.

4.6.4 Stack Separation

As discussed in sections 3.2.3 and 4.3.2, Darjeeling uses a double-ended operand stack to
eliminate the need for run-time type analysis. Logically speaking there are two stacks, one for
integers, and one reference types. For most instructions it is immediately clear which stacks they
mutate, but for some instructions this is context sensitive and type analysis is required for correct
translation.

We illustrate the context sensitivity for the dup_x1 instruction, whose effect is to 'duplicate the
top element on the stack and insert it one place down'. This can be written as ..., v2, v1 → ..., v1, v2,
v1 . The correct replacement for dup_x1 depends on the values of v1 and v2 . These can be any of
short, int, or ref, yielding 9 different possible combinations. In the interest of simplicity we
shall omit the int type, but it should be clear that the case can be easily extended to include other
data types.

The possible combinations of input types for the instruction are shown in Table 4.3. The three
columns show the contents of the unified (Java) stack, the reference stack, and the integer stack
respectively. From this table we can see how the transformation ..., v2, v1 → ..., v1, v2, v2 would
apply to each case. Table 4.4 shows the correct replacement instruction for dup_x1 for each of
the four cases.

If both v1 and v2 are of the same type, dup_x1 can simply be replaced with a dup_x1 that
operates on the appropriate stack, idup_x1 for integers and adup_x1 for references. If they are
of different types, the top element and the element below it are located on different stacks, so the
instruction can be replaced by an appropriate duplicate instruction.

4.6.5 Local Variable Mapping

Java compilers such as javac are usually not very efficient when it comes to assigning local
variables to local variable slots because for most virtual machine implementations memory
consumption due to stack space is not a major issue, and the assumption is made that frequently
executed code will be jitted (compiled) anyway. Usually one or more slots are allocated for each
local variable, leading to memory wastage when two or more variables can be mapped onto the
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same space. The infuser tool performs live range analysis to determine which variables can be
mapped onto the same slot(s) and remaps the local variables accordingly. Darjeeling does not
require the Java compiler to supply type information about local variables. Instead this information
is inferred from byte code analysis so that even when a variable is declared int it may still be
optimised to the short type.

4.7 Limitations

We have chosen to support a subset of the Java language. Like Java Card [31] we do not support
floating point or 64-bit datatypes. We are looking at supporting the long type in the future to
increase compatibility with CLDC 1.0.

The DVM also does not support reflection since the type information required is not stored in our
executable file format. Support for the synchronized modifier on methods is not supported
because there is no loaded class to synchronise on, although this is easily simulated using
synchronized blocks.
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5 BENCHMARKS

To assess the performance of the Darjeeling VM we have created a set of benchmark programs
that exercise specific parts of the implementation in terms of execution speed and code size.
Performance in a real-world environmental monitoring application is discussed in Section 6.

5.1 Performance

To get a feel for the execution overhead of our interpreter we constructed three micro benchmarks.
First we ran a bubble sort algorithm that sorts 256 32-bit integer values, initialised to strictly
decreasing values. The second test is an 8x8 vector convolution that is performed 10,000 times,
also using 32-bit values. Finally we hand-optimised an implementation of the well known MD5
hashing algorithm, generating MD5 hashes for the empty string, `a', `abc', `darjeeling', and
`message digest'. These hashes are generated 1,000 times.

Each of the benchmark tests has both a C and a Java version and is written in such a way that the
difference between both versions is almost completely syntactical. We were careful to eliminate
any memory allocation after the test initialisation to make sure the garbage collector would not be
triggered and skew the results.

Test C Java Java/C Instructions/s

Bubblesort 0.3s 23.3s 77.7 60,618
Vector conv. 9.1s 496.7s 54.47 65,454
MD5 13.1s 399.7s 30.4 52,294

Table 5.1: Performance benchmarks.

We ran the tests on an ATMega128 microcontroller at 8MHz. The results are shown in Table 5.1.
The C and Java columns show the run times for the bubble sort, vector convolution, and MD5 tests
respectively, and the Java/C column shows their ratio. The final column shows how many Java
instructions per second were executed during each of the tests.

In these particular tests the performance overhead of the Darjeeling VM was about 30-78x. The
measured byte code instruction throughput was between 52-65k instructions per second. Note that
although the VM was executing more instructions per second on the bubble sort test than on the
MD5 test, the first is much slower compared to its native counterpart than the latter. We can
explain this by looking at how VM instructions are interpreted.

Interpreting a VM instruction has a fetch, decode, and execute phase. While the fetch and decode
components are more or less the same for each instruction, there are large time differences for the
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execution phase. Method invocation and type checking instructions take longer to execute than
simple arithmetic, and instructions that operate on 32-bit values are generally slower than their
16-bit counterparts. During the MD5 test the interpreter is executing less, but more complex
instructions per second. The bubble sort test uses more trivial instructions, causing a greater
relative overhead due to fetching and decoding.

Test C Java Java/C Instructions/ss

Bubblesort 0.2s 19.3s 81.5 71,526
Vector conv. 4.6s 520.9s 113.2 71,512

Table 5.2: Performance benchmarks, 16-bit.

We illustrate this effect by re-running the bubble sort and vector convolution tests, but this time
altered to only use 16-bit data types (the MD5 algorithm is a 32-bit algorithm so could not be
rewritten). The results are shown in Table 5.2.

The interpreter has a higher instruction throughput in both tests due to the simpler instructions, but
the fixed overhead makes it unable to take advantage of the short-typed arithmetic as much as
the native C implementations. The 16-bit Java version of the vector convolution test has even
become slightly slower compared to the 32-bit one, which is due to the infuser not being able to
completely optimise the arithmetic and having to insert explicit conversion instructions between
the int and short data types (see Section 4.6.2). As expected, the interpreter is performing
much worse on these new tests compared to native C, with measured performance overheads of
82x and 113x for the bubble sort and vector convolution tests respectively.

These results illustrate that the performance overhead of Darjeeling is difficult to measure because
it is very much dependent on the application under test. A high instruction throughput does not
necessarily mean a good performance, especially when compared to equivalent native code. We
found that the cost of interpreting Java versus executing native C code, in terms of execution time,
ranges from a factor of 30-113x in our tests. This translates to roughly two orders of magnitude.
Section 6.2 examines how this number affects the network life time in a real deployment, and
shows that the impact is less than 1% due to the CPU only contributing a very small amount to the
total energy consumption.

5.2 Code size

As discussed in Section 4.1, Darjeeling uses a split-VM architecture. This allows for considerably
smaller executables. Table 5.3 compares the size of several infusions when stored as Java .jar files,
which are zip compressed archives that contain .class files, and our .di file format which uses no
compression but eliminates all string literals.

jar di reduction

Blink 856 146 83%
CTP 27,349 7,889 71%
Test Suite 42,834 19,023 55%
Base library 14,795 3,591 75%

Table 5.3: File format comparison (sizes in bytes).

Size reduction is related to the ratio of string literals versus byte code in the input .class files. The
base library for instance is mostly made up of class and interface definitions with little to no actual
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JVM DVM Reduction

Blink 10 6 40%
CTP 11.4 6.3 45%
Test Suite 13.7 9.3 32%
Base library 7.1 4.1 42%

Table 5.4: Local variables and operand stack size (bytes).

JVM DVM Reduction

Blink 18 14 22%
CTP 19.4 14.3 27%
Test Suite 21.7 17.3 20%
Base library 15.1 12.1 20%

Table 5.5: Total stack frame size (bytes).

byte code, which accounts for the significant reduction in code size (75%). The same holds for the
exemplary TinyOS application, blink, which only has a single method implementation. The CTP
routing protocol library (see Section 6), is also reduced considerably in size because most methods
are short, just a few lines of code. This was done to improve modularity and readability in line
with good software engineering practice. In contrast the test suite has relatively long methods each
performing a series of short tests, which is why it was reduced less than the others.

The conclusion is that although writing modular code with many small methods, classes, and
interfaces will still add to the code size, the cost is not nearly as high as with the traditional .jar file
format because Darjeeling does not retain the string literals in the infusion file.

5.3 Stack space

In order to measure the benefits of our 16-bit stack architecture in terms of memory usage during
execution, we measured the average size of stack frames for methods in the four benchmark
infusions. The size required for a single stack frame is the sum of the operand stack size, the size
required for the local variables, and some fixed overhead for bookkeeping such as return address,
stack pointers, and so forth. We calculated this number both for the 32-bit JVM case and our 16-bit
DVM.

Table 5.4 shows the size of the variable part of the stack frame, the operand stack and local
variables, for each of the test cases. During the development of the CTP library we used short
types for loops counters and intermediate values wherever possible, resulting in a reduction of
45%. The test suite on the other hand uses integer types in many places, but still stack usage is
reduced by 32%. This is mainly due to reference types being reduced from 32-bit to 16-bit. Table
5.5 shows the average total stack frame size, including the fixed overhead (8 bytes) due to the
bookkeeping section. It shows that the total reduction is between 20-27% for our benchmark
infusions.
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5.4 Multithreading

Our linked stack architecture allocates stack space on demand, allowing threads to grow and shrink
their memory usage as they run. To illustrate how this affects memory consumption we ran a
garbage collection test from our test suite. It sorts 20 numbers by inserting them into a binary tree,
causing not only a large number of small linked objects to be created, but also generating a lot of
nested method calls. The test calls the algorithm three times, in three concurrent threads.

Figure 5.1(a) shows the amount of stack space for each thread as the test ran, including the thread
object and heap manager headers. Each thread uses up to 445 bytes, which makes the total peak at
1335. This means that the worst-case total stack usage for this test is equal to the sum of the worst-
case values of the individual threads.

We can improve on this performance by allowing only one of the threads to perform the tree sort
algorithm at a time. We ran the test again, but this time we added a synchronized block
around the call to the algorithm, essentially serialising individual runs. The trace for this second
run is shown in Figure 5.1(b). This time the total peaks at a mere 535 bytes, which is the peak
value of a single thread, 445 bytes, plus the overhead of the two blocked threads at 45 bytes each.

Using a linked stack architecture in conjunction with synchronisation we can make programs that
would otherwise use large amounts of stack space run in much tighter memory spaces, while
leaving full control with the application programmer.

5.5 Portability

We evaluated the portability of Darjeeling by running our CTP implementation on three different
test beds. Table 5.6 shows the different platforms and their properties. We have chosen to run
Darjeeling on three different operating systems: TinyOS [16], Contiki [9] and FOS [8], each
implementing a different form of concurrency.

(a) Garbage collection, unsynchronised. (b) Garbage collection, unsynchronised.
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TNode TMote Sky Fleck3/Fleck3B

Main 225 359 86
Radio 69 92 69
Sensors 184 157 110
Total 478 608 265

Table 5.7: SLOCCount for native code modules.

TNOde TMote Sky Fleck3/Fleck3B

MCU Atmega128 MSP430 Atmega128(1)
Architecture 8-bit 16-bit 8-bit
RAM 4kB 10kB 4/8kB
Radio CC1000 CC2420 nRF905
OS TinyOS Contiki FOS
Concurrency events protothreads threads

Table 5.6: Platforms.

We implemented native functions for the javax.radio.Radio class which has broadcast,
unicast send, and receive primitives. Table 5.7 shows how many source lines of C code each of the
ports required. The main component is the entry point of the application that bootstraps the virtual
machine. The radio and sensors components are the native code required to access the MAC layer
and sensor nodes from Java respectively.

The TNOde and Sky testbeds are indoor with a great amount of overlap, so that each node can hear
a large number of neighbouring nodes. On each of the platforms we allocated the same amount of
RAM (2kB) to the virtual machine leaving the rest for the operating system. The Java application
was programmed into the nodes via wired means.
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6 A REAL-WORLD APPLICATION

In this section we evaluate the performance of Darjeeling for a real-world environmental
monitoring application. The node, shown in Figure 6.1, is part of a small network that monitors
micro-climate variation in an area of forest regeneration. The variables measured include soil
moisture and leaf wetness, wind speed and direction, temperature and humidity, as well as
engineering data regarding solar power generation, battery voltage and link quality. This
application is typical of the majority of real-world sensors networks - the node is asleep most of
the time, waking periodically (on the scale of minutes) to make measurements, perform some
computation, then return results via a collection tree protocol.

In this section we describe the implementation of a collection tree protocol written entirely in Java,
and also the re-implementation in Java of the sensor network application, originally written in C.

6.1 The routing protocol

Demonstrations exist where Java is used to simply glue C components together, but this does not
show the true advantage of Java compared to an ASVM. To see how well Darjeeling copes with
more complex multithreading applications we implemented a pure Java version of the well known
Collection Tree Protocol (CTP), the standard routing protocol for TinyOS 2.x. This is also a
powerful demonstration of how higher-level languages like Java can be used to quickly and
conveniently prototype algorithms. The implementation uses many advanced features of the Java
language such as inheritance, multiple threads, synchronisation, generics, exception handling, and
dynamic memory management.

The CTP library comprises three main components, the packet handler, routing engine, and data
engine. The packet handler provides a packet sending and receiving interface to the other two
components and supports reliable unicast with retries. It queues outgoing packets to maintain
packet order. A queue of only a single incoming packet is kept on the native side of the
implementation. While this could potentially cause incoming packets to be dropped if the virtual
machine is not fast enough to process them, in practice we have not observed this problem. The
packet handler provides an event interface that notifies listeners on successful or unsuccessful
packet delivery, and packet reception.

Packets are stored as byte arrays wrapped in an instance of the Packet class, which has get- and
set operations that directly mutate the data. We use inheritance to construct different packet types
such as CtpRoutingFrame and CtpDataFrame. We use the factory design pattern to allow
pluggable decoding of incoming packets

The routing engine beacons a node's estimated transmission count to the sink (ETX) and keeps a
list of neighbour nodes and their ETX values. It estimates the link quality to each neighbour from
the number of retries that, on average, are needed to deliver a unicast packet to the node.
Neighbours are pinged periodically in a round-robin fashion. The neighbour with the lowest total
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Figure 6.1: The environmental monitoring node which measures soil moisture, leaf wetness, wind
speed and direction, temperature and humidity.

cost is elected as the node's parent in the collection tree. The data engine forwards and periodically
generates data packets.

Our Java implementation uses five threads, two in the routing engine, two in the packet handler,
and one in the data engine. The size of the code, as counted with SLOCCount, is 1,163 source
lines of Java, divided over 20 source files. In comparison, the NesC implementation uses 1,613
source lines of code. The infused CTP library as a .di file is less than 8kB (cf. Table 5.3).

6.2 Environmental monitoring application

The application was originally coded for the threaded operating system environment, FOS, with a
CTP-like routing module implemented in C. The original C-code application contains 2
application threads and 6 system threads for CTP. The application comprises 43,852 bytes of
program flash, 1,219 bytes of RAM (data + bss) and another 1,600 bytes of stack space, easily
fitting within the resources of an ATmega128 processor.

It has been reimplemented in Darjeeling using the Java-based CTP. Access to sensors is via native
methods in the org.xxx.sensors infusion. The software stack is shown in Figure 6.2. The
Darjeeling run-time requires 75,412 bytes of program flash, 1,090 bytes of RAM and another 300
bytes for FOS thread stacks. It does not rely on the FOS CTP implementation, which reduces the
total number of threads. This leaves well over 2kB of RAM available for the Java heap. The Java
version has around half the source lines of the C version, mainly due to far fewer module
initialisations required, and is a single Java thread implementing a wait, measure, send cycle. The
infused application as a .di file is 1,564 bytes, which is clearly small enough to conveniently load
over the air. The run-time, CTP and application infusion combined easily fit within the resources
of an ATmega128 processor.

Each version of the application was run on the same node and the current consumption measured
using a digital scope and a current shunt resistor. Data was downloaded from the scope for
analysis, which allows for some precision in execution time measurement, and the trace for
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Figure 6.2: Software stack.

Figure 6.3: Current consumption versus time for the environmental monitoring node implemented
in Darjeeling. The radio transceiver's standby draw of 12mA has been subtracted from the raw data

to produce these plots.

Darjeeling is shown in Figure 6.3. To simplify the comparison we have disabled all LEDs as well
as the CTP networking to eliminate energy consumption due to beaconing and packet forwarding -
we wish to focus on the application performance not CTP.
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From the figure we can see that the measurement cycle lasts a bit less than 2 seconds and includes
various delays for sensor settling time and wind-speed pulse accumulation. During the delays the
processor is put into sleep state by FOS. The ATmega128 processor is only entering a light sleep
mode due to the use of non-low power timers and the serial port for debugging within the currently
non power-optimised Darjeeling run-time. The total ontime for the cycle is 168 ms. By
comparison the C version of the application is active for 114 ms. This indicates that Darjeeling is
50% slower than C, but over the measurement cycle of 5 minutes, this represents just 54 ms extra
computation every 300s, which is an additional 0.018% overhead.
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7 CONCLUSIONS

Software development for wireless sensor networks could benefit greatly from the use of virtual
machines and higher-level languages such as Java. Error handling through exceptions, dynamic
memory management and protection, object-oriented design, and an intuitive concurrency model
are some of the features that make them an attractive concept. The feeling among many
researchers however is that the performance overhead of interpreting VM instructions is
prohibitively large. This computational overhead also translates directly into increased power
consumption as the CPU has to be kept under power for longer.

The goals of this thesis were firstly to evaluate the use of the Java programming language in the
context of wireless sensor networks and quantify the overhead in terms of execution speed and
memory usage, and second to contribute to the field of virtual machine design for resource-
constrained platforms. These goals were approached by designing and implementing Darjeeling, a
virtual machine built from the ground up for severly memory constrained devices.

Darjeeling allows for the execution of a large subset of the Java language on micro controllers
with typically 2-10kB of RAM. Through performance micro benchmarks we have shown that the
overhead of interpreting Java is roughly two orders of magnitude compared to native C code. We
demonstrated a data gathering application with a routing layer written in Java, which takes less
than 8kB of code space and less than 2kB of RAM. The nature of WSN applications is such that
the CPU is put into a power-saving deep sleep mode most of the time, so that the contribution of
actual processing to the total energy consumption is very small. We observed that our Java
application, although slower, decreased the network life time with less than 1% compared to an
equivalent native implementation.

Darjeeling contributes to the field of VM design in several ways. We introduce a novel approach
to garbage collection, using strict separation of reference and non-reference types. This allows for
an efficient O(n) marking phase and precise compacting collection without the need for expensive
run-time type inference or type tagging. We have shown that efficient preemptive multi-threading
can be achieved by allocating stack space ad-hoc, with idle threads using as little as 45 bytes,
providing a feasible alternative to event-based and protothreading concurrency models. Finally we
show how our 16-bit instruction set reduces stack space requirements with as much as 27% in our
real-world example, and describe an algorithm for optimising 32-bit integer arithmetic to
equivalent 16-bit arithmetic where this is possible.

Our toolchain includes a static linking tool, called the infuser, that reduces code footprint by
55-83%, at the cost of sacrificing reflection. Darjeeling was demonstrated to be highly portable
across MCUs and operating systems, with platform-specific code for the VM ranging from
265-608 source lines of code. Darjeeling is, to the best of our knowledge, the first full-featured
open source and Java capable VM for wireless sensor networks.
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A INSTRUCTION SET

AALOAD
Opcode: 56 (0x38)
Format: aaload
Integer stack: ..., index:short ⇒ ...
Reference stack: ..., arrayref ⇒ ..., value:short
Description: Retrieves a reference from an array at
index index and pushes it onto the reference stack. The
index and arrayref are popped from the integer- and
reference stack respectively.
Exceptions: Throws NullPointerException if
arrayref is null. Throws
IndexOutOfBoundsException if index is not a
valid index.

AASTORE
Opcode: 61 (0x3d)
Format: iastore
Integer stack: ..., index:short ⇒ ...
Reference stack: ..., arrayref, value ⇒ ...
Description: Pops a reference value from the stack
and stores it in array arrayref at index index. The index
is popped from the integer stack, the arrayref and value
are popped from the reference stack.
Exceptions: Throws NullPointerException if
arrayref is null. Throws
IndexOutOfBoundsException if index is not a
valid index.

ACONST_NULL
Opcode: 15 (0x0f)
Format: aconst_null
Reference stack: ..., ⇒ ..., null
Description: Push null onto the reference stack

ADUP
Opcode: 70 (0x46)
Format: adup
Reference stack: ..., value1 ⇒ ..., value1 , value1

Description: Duplicates the top value on the refrence
stack.

ADUP2
Opcode: 71 (0x47)
Format: adup2
Reference stack: ..., value2 , value1 ⇒ ..., value2 ,
value1 , value2 , value1

Description: Duplicates the top two values on the
refrence stack.

ADUP_X1
Opcode: 72 (0x48)
Format: adup_x1
Reference stack: ..., value2 , value1 ⇒ ..., value1 ,
value2 , value1

Description: Duplicates the top value on the reference
stack and inserts it one place down.

ADUP_X2
Opcode: 73 (0x49)
Format: adup_x2
Reference stack: ..., value3 , value2 , value1 ⇒ ...,
value1 , value3 , value2 , value1

Description: Duplicates the top value on the reference
stack and inserts it two places down.

ALOAD
Opcode: 32 (0x20)
Format: aload, slot_nr
Reference stack: ..., ⇒ ..., value
Description: Loads a reference value from the
reference local variable pool at slot index slot_nr and
pushes it onto the stack

ALOAD_0
Opcode: 33 (0x21)
Format: aload_0
Reference stack: ..., ⇒ ..., value
Description: Loads a reference value from the
reference local variable pool at slot index 0 and pushes it
onto the stack
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ALOAD_1
Opcode: 34 (0x22)
Format: aload_1
Reference stack: ..., ⇒ ..., value
Description: Loads a reference value from the
reference local variable pool at slot index 1 and pushes it
onto the stack

ALOAD_2
Opcode: 35 (0x23)
Format: aload_2
Reference stack: ..., ⇒ ..., value
Description: Loads a reference value from the
reference local variable pool at slot index 2 and pushes it
onto the stack

ALOAD_3
Opcode: 36 (0x24)
Format: aload_3
Reference stack: ..., ⇒ ..., value
Description: Loads a reference value from the
reference local variable pool at slot index 3 and pushes it
onto the stack

ANEWARRAY
Opcode: 160 (0xa0)
Format: anewarray, infusion_id, entity_id
Reference stack: ..., ⇒ ..., array
Description: Creates a new array of class pointed to by
the local ID (infusion_id, entity_id).

APOP
Opcode: 68 (0x44)
Format: apop
Reference stack: ..., value1 ⇒ ...
Description: Pops the top value off the refrence stack.

APOP2
Opcode: 69 (0x45)
Format: apop2
Reference stack: ..., value2 , value1 ⇒ ...
Description: Pops the top two values off the refrence
stack.

ARETURN
Opcode: 152 (0x98)
Format: areturn
Reference stack: ..., value ⇒ ...
Description: Exists the current method, returning a
value of type ref.

ASTORE
Opcode: 47 (0x2f)
Format: astore, slot_nr
Reference stack: ..., value ⇒ ...
Description: Pops a reference value from the
reference stack and stores it in the reference local
variable pool at index slot_nr

ASTORE_0
Opcode: 48 (0x30)
Format: astore_0
Reference stack: ..., value ⇒ ...
Description: Pops a reference value from the
reference stack and stores it in the reference local
variable pool at index 0

ASTORE_1
Opcode: 49 (0x31)
Format: astore_1
Reference stack: ..., value ⇒ ...
Description: Pops a reference value from the
reference stack and stores it in the reference local
variable pool at index 1

ASTORE_2
Opcode: 50 (0x32)
Format: astore_2
Reference stack: ..., value ⇒ ...
Description: Pops a reference value from the
reference stack and stores it in the reference local
variable pool at index 2

ASTORE_3
Opcode: 51 (0x33)
Format: astore_3
Reference stack: ..., value ⇒ ...
Description: Pops a reference value from the
reference stack and stores it in the reference local
variable pool at index 3

ASWAP
Opcode: 74 (0x4a)
Format: aswap
Reference stack: ..., value2 , value1 ⇒ ..., value1 ,
value2

Description: Swaps the two top elements on the
reference stack.
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ATHROW
Opcode: 161 (0xa1)
Format: athrow
Reference stack: ..., throwable ⇒ ...
Description: Throws throwable.

BALOAD
Opcode: 52 (0x34)
Format: baload
Integer stack: ..., index:short ⇒ ..., value:short
Reference stack: ..., arrayref ⇒ ...
Description: Retrieves a byte or boolean from an
array at index index, widens it to type short and
pushes it onto the integer stack. The index and arrayref
are popped from the integer- and reference stack
respectively.
Exceptions: Throws NullPointerException if
arrayref is null. Throws
IndexOutOfBoundsException if index is not a
valid index.

BASTORE
Opcode: 57 (0x39)
Format: bastore
Integer stack: ..., index:short , value:short ⇒ ...
Reference stack: ..., arrayref ⇒ ...
Description: Pops a byte or boolean value from the
stack (byte types are automatically widened to short)
and stores it in array arrayref at index index. The index
and value are popped from the integer stack, the arrayref
is popped from the reference stack.
Exceptions: Throws NullPointerException if
arrayref is null. Throws
IndexOutOfBoundsException if index is not a
valid index.

BINC
Opcode: 119 (0x77)
Format: binc, slot_nr, increase:byte
Description: Increases local variable of type byte at
index slot_nr by increase

BIPUSH
Opcode: 17 (0x11)
Format: bipush, valuebyte1
Integer stack: ..., ⇒ ..., valuebyte1:int
Description: Widen immediate byte value valuebyte1
to type int and push onto the integer stack

BSPUSH
Opcode: 16 (0x10)
Format: bspush, valuebyte1
Integer stack: ..., ⇒ ..., valuebyte1:short
Description: Widen immediate byte value valuebyte1
to type short and push onto the integer stack

CALOAD
Opcode: 53 (0x35)
Format: caload
Integer stack: ..., index:short ⇒ ..., value:short
Reference stack: ..., arrayref ⇒ ...
Description: Retrieves a char from an array at index
index, widens it to type short and pushes it onto the
integer stack. The index and arrayref are popped from
the integer- and reference stack respectively.
Exceptions: Throws NullPointerException if
arrayref is null. Throws
IndexOutOfBoundsException if index is not a
valid index.

CASTORE
Opcode: 58 (0x3a)
Format: castore
Integer stack: ..., index:short , value:short ⇒ ...
Reference stack: ..., arrayref ⇒ ...
Description: Pops a char value from the stack (char
types are automatically widened to short) and stores it
in array arrayref at index index. The index and value are
popped from the integer stack, the arrayref is popped
from the reference stack.
Exceptions: Throws NullPointerException if
arrayref is null. Throws
IndexOutOfBoundsException if index is not a
valid index.

CHECKCAST
Opcode: 162 (0xa2)
Format: checkcast, infusion_id, entity_id
Reference stack: ..., object ⇒ ..., object
Description: If object is not an instance of the class
pointed to by the local ID (infusion_id, entity_id), throws
a ClassCastException.

GETFIELD_A
Opcode: 79 (0x4f)
Format: getfield_a, indexbyte
Reference stack: ..., objectref ⇒ ..., value
Description: Gets the value of the reference field in
object objectref at immediate index indexbyte and pushes
it onto the reference stack

53



GETFIELD_B
Opcode: 75 (0x4b)
Format: getfield_b, offsetbyte
Integer stack: ... ⇒ ..., value:short
Reference stack: ..., objectref ⇒ ...
Description: Gets the value of the byte field in object
objectref at immediate offset offsetbyte, widens it to type
short and pushes it onto the integer stack

GETFIELD_C
Opcode: 76 (0x4c)
Format: getfield_c, offsetbyte
Integer stack: ... ⇒ ..., value:short
Reference stack: ..., objectref ⇒ ...
Description: Gets the value of the char field in object
objectref at immediate offset offsetbyte, widens it to type
short and pushes it onto the integer stack

GETFIELD_I
Opcode: 78 (0x4e)
Format: getfield_i, offsetbyte
Integer stack: ... ⇒ ..., value:int
Reference stack: ..., objectref ⇒ ...
Description: Gets the value of the int field in object
objectref at immediate offset offsetbyte and pushes it
onto the integer stack

GETFIELD_S
Opcode: 77 (0x4d)
Format: getfield_s, offsetbyte
Integer stack: ... ⇒ ..., value:short
Reference stack: ..., objectref ⇒ ...
Description: Gets the value of the short field in object
objectref at immediate offset offsetbyte and pushes it
onto the integer stack

GETSTATIC_A
Opcode: 89 (0x59)
Format: getstatic_a, infusion_id, indexbyte
Reference stack: ..., ⇒ ..., value
Description: Gets the value of a reference static
variable in the infusion indicated by infusion_id at index
indexbyte and pushes it onto the reference stack.

GETSTATIC_B
Opcode: 85 (0x55)
Format: getstatic_b, infusion_id, indexbyte
Integer stack: ..., ⇒ ..., value:short
Description: Gets the value of a byte static variable in
the infusion indicated by infusion_id at index indexbyte,
widens it to type short, and pushes it onto the integer
stack.

GETSTATIC_C
Opcode: 86 (0x56)
Format: getstatic_c, infusion_id, indexbyte
Integer stack: ..., ⇒ ..., value:short
Description: Gets the value of a char static variable in
the infusion indicated by infusion_id at index indexbyte,
widens it to type short, and pushes it onto the integer
stack.

GETSTATIC_I
Opcode: 88 (0x58)
Format: getstatic_i, infusion_id, indexbyte
Integer stack: ..., ⇒ ..., value:int
Description: Gets the value of a int static variable in
the infusion indicated by infusion_id at index indexbyte,
and pushes it onto the integer stack.

GETSTATIC_S
Opcode: 87 (0x57)
Format: getstatic_s, infusion_id, indexbyte
Integer stack: ..., ⇒ ..., value:short
Description: Gets the value of a short static variable
in the infusion indicated by infusion_id at index
indexbyte, and pushes it onto the integer stack.

GOTO
Opcode: 146 (0x92)
Format: goto, branch_adress
Description: Branch unconditionally.

GOTO_W
Opcode: 147 (0x93)
Format: goto_w, branch_adress
Description: Branch unconditionally, wide address.

I2B
Opcode: 124 (0x7c)
Format: i2b
Integer stack: ..., value:int ⇒ ..., value:byte
Description: Narrows a value of type int to byte.

I2C
Opcode: 169 (0xa9)
Format: i2c
Integer stack: ..., value:int ⇒ ..., value:char
Description: Narrows a value of type int to char.
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I2S
Opcode: 125 (0x7d)
Format: i2s
Integer stack: ..., value:int ⇒ ..., value:short
Description: Narrows a value of type int to short.

IADD
Opcode: 107 (0x6b)
Format: iadd
Integer stack: ..., value2 :int, value1 :int ⇒ ...,
result:int
Description: Pops two int values from the operand
stack as value1 and value2 . The result value1 + value2 is
pushed onto the integer stack as a int. Note that any
potential overflow is discarded.

IALOAD
Opcode: 55 (0x37)
Format: iaload
Integer stack: ..., index:short ⇒ ..., value:int
Reference stack: ..., arrayref ⇒ ...
Description: Retrieves an int from an array at index
index, and pushes it onto the integer stack. The index and
arrayref are popped from the integer- and reference
stack respectively.
Exceptions: Throws NullPointerException if
arrayref is null. Throws
IndexOutOfBoundsException if index is not a
valid index.

IAND
Opcode: 116 (0x74)
Format: iand
Integer stack: ..., value2 :int, value1 :int ⇒ ...,
result:int
Description: Pops two int values from the operand
stack as value1 and value2 . The result value1 & value2 is
pushed onto the integer stack as a int. Note that any
potential overflow is discarded.

IASTORE
Opcode: 60 (0x3c)
Format: iastore
Integer stack: ..., index:short , value:int ⇒ ...
Reference stack: ..., arrayref ⇒ ...
Description: Pops an int value from the stack and
stores it in array arrayref at index index. The index and
value are popped from the integer stack, the arrayref is
popped from the reference stack.
Exceptions: Throws NullPointerException if
arrayref is null. Throws
IndexOutOfBoundsException if index is not a
valid index.

ICMPEQ
Opcode: 140 (0x8c)
Format: icmpeq, branch_adress
Integer stack: ..., value2 :int, value1 :int ⇒ ...

Description: Branch if value2 equals value1 .

ICMPGE
Opcode: 143 (0x8f)
Format: icmpge, branch_adress
Integer stack: ..., value2 :int, value1 :int ⇒ ...

Description: Branch if value2 greater than or equals
value1 .

ICMPGT
Opcode: 144 (0x90)
Format: icmpgt, branch_adress
Integer stack: ..., value2 :int, value1 :int ⇒ ...

Description: Branch if value2 greater than value1 .

ICMPLE
Opcode: 145 (0x91)
Format: icmple, branch_adress
Integer stack: ..., value2 :int, value1 :int ⇒ ...

Description: Branch if value2 less than or equals value1
.

ICMPLT
Opcode: 142 (0x8e)
Format: icmplt, branch_adress
Integer stack: ..., value2 :int, value1 :int ⇒ ...

Description: Branch if value2 less than value1 .

ICMPNE
Opcode: 141 (0x8d)
Format: icmpne, branch_adress
Integer stack: ..., value2 :int, value1 :int ⇒ ...

Description: Branch if value2 not equals value1 .

ICONST_0
Opcode: 9 (0x09)
Format: iconst_0
Integer stack: ..., ⇒ ..., 0:int
Description: Push int constant [V2;V1] = 0 onto the
integer stack
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ICONST_1
Opcode: 10 (0x0a)
Format: iconst_1
Integer stack: ..., ⇒ ..., 1:int
Description: Push int constant [V2;V1] = 1 onto the
integer stack

ICONST_2
Opcode: 11 (0x0b)
Format: iconst_2
Integer stack: ..., ⇒ ..., 2:int
Description: Push int constant [V2;V1] = 2 onto the
integer stack

ICONST_3
Opcode: 12 (0x0c)
Format: iconst_3
No Change
Description: No operation
Integer stack: ..., ⇒ ..., 3:int
Description: Push int constant [V2;V1] = 3 onto the
integer stack

ICONST_4
Opcode: 13 (0x0d)
Format: iconst_4
Integer stack: ..., ⇒ ..., 4:int
Description: Push int constant [V2;V1] = 4 onto the
integer stack

ICONST_5
Opcode: 14 (0x0e)
Format: iconst_5
Integer stack: ..., ⇒ ..., 5:int
Description: Push int constant [V2;V1] = 5 onto the
integer stack

ICONST_M1
Opcode: 8 (0x08)
Format: iconst_m1
Integer stack: ..., ⇒ ..., -1:int
Description: Push int constant [V2;V1] = -1 onto the
integer stack

IDIV
Opcode: 110 (0x6e)
Format: idiv
Integer stack: ..., value2 :int, value1 :int ⇒ ...,
result:int
Description: Pops two int values from the operand
stack as value1 and value2 . The result value1 / value2 is
pushed onto the integer stack as a int. Note that any
potential overflow is discarded.

IDUP
Opcode: 64 (0x40)
Format: idup
Integer stack: ..., value1:short ⇒ ..., value1:short ,
value1:short
Description: Duplicates the top value of type short on
the integer stack.

IDUP2
Opcode: 65 (0x41)
Format: idup2
Integer stack: ..., value1:int ⇒ ..., value1:int ,
value1:int
Integer stack: ..., value2:short , value1:short ⇒ ...,
value2:short , value1:short , value2:short ,
value1:short
Description: Depending on the state of the stack, either
duplicates one value of type int or duplicates two
values of type short.

IDUP_X1
Opcode: 66 (0x42)
Format: idup_x1
Integer stack: ..., value2:short , value1:short ⇒ ...,
value1:short , value2:short , value1:short
Description: Duplicates the top value of type short on
the integer stack and inserts it one place down.

IDUP_X2
Opcode: 166 (0xa6)
Format: idup_x2
Integer stack: ..., value3:short , value2:short ,
value1:short ⇒ ..., value1:short , value3:short ,
value2:short , value1:short
Description: Duplicates the top value of type short on
the integer stack and inserts it two places down.

IFNULL
Opcode: 133 (0x85)
Format: ifnull, branch_adress
Reference stack: ..., value ⇒ ...
Description: Branch if value not equals null.
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IIFEQ
Opcode: 126 (0x7e)
Format: iifeq, branch_adress
Integer stack: ..., value:int ⇒ ...

Description: Branch if value equals zero.

IIFGE
Opcode: 129 (0x81)
Format: iifge, branch_adress
Integer stack: ..., value:int ⇒ ...

Description: Branch if value greater than or equals zero.

IIFGT
Opcode: 130 (0x82)
Format: iifgt, branch_adress
Integer stack: ..., value:int ⇒ ...

Description: Branch if value greater than zero.

IIFLE
Opcode: 131 (0x83)
Format: iifle, branch_adress
Integer stack: ..., value:int ⇒ ...

Description: Branch if value less than or equals zero.

IIFLT
Opcode: 128 (0x80)
Format: iiflt, branch_adress
Integer stack: ..., value:int ⇒ ...

Description: Branch if value less than zero.

IIFNE
Opcode: 127 (0x7f)
Format: iifne, branch_adress
Integer stack: ..., value:int ⇒ ...

Description: Branch if value not equals zero.

IINC
Opcode: 121 (0x79)
Format: iinc, slot_nr, increase:byte
Description: Increases local variable of type int at
index slot_nr by increase

IINC_W
Opcode: 167 (0xa7)
Format: iinc_w, slot_nr, increase:short
Description: Increases local variable of type int at
index slot_nr by increase

IIPUSH
Opcode: 20 (0x14)
Format: bspush, valuebyte4 , valuebyte3 , valuebyte2 ,
valuebyte1
Integer stack: ..., ⇒ ..., (valuebyte4 <<24 + valuebyte3
<<16 + valuebyte2 <<8 + valuebyte1 ):int
Description: Push immediate int value (valuebyte4
<<24 + valuebyte3 <<16 + valuebyte2 <<8 + valuebyte1 )
onto the integer stack

ILOAD
Opcode: 27 (0x1b)
Format: iload, slot_nr
Integer stack: ..., ⇒ ..., value:int
Description: Loads an int value from the integer local
variable pool at slot index slot_nr and pushes it onto the
stack

ILOAD_0
Opcode: 28 (0x1c)
Format: iload_0
Integer stack: ..., ⇒ ..., value:int
Description: Loads an int value from the integer local
variable pool at slot index 0 and pushes it onto the stack

ILOAD_1
Opcode: 29 (0x1d)
Format: iload_1
Integer stack: ..., ⇒ ..., value:int
Description: Loads an int value from the integer local
variable pool at slot index 1 and pushes it onto the stack

ILOAD_2
Opcode: 30 (0x1e)
Format: iload_2
Integer stack: ..., ⇒ ..., value:int
Description: Loads an int value from the integer local
variable pool at slot index 2 and pushes it onto the stack

ILOAD_3
Opcode: 31 (0x1f)
Format: iload_3
Integer stack: ..., ⇒ ..., value:int
Description: Loads an int value from the integer local
variable pool at slot index 3 and pushes it onto the stack
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IMUL
Opcode: 109 (0x6d)
Format: imul
Integer stack: ..., value2 :int, value1 :int ⇒ ...,
result:int
Description: Pops two int values from the operand
stack as value1 and value2 . The result value1 * value2 is
pushed onto the integer stack as a int. Note that any
potential overflow is discarded.

INEG
Opcode: 112 (0x70)
Format: ineg
Integer stack: ..., value1 :int ⇒ ..., result:int
Description: Negates the top int element on the
integer stack. Note that any potential overflow is
discarded.

INSTANCEOF
Opcode: 163 (0xa3)
Format: instanceof, infusion_id, entity_id
Integer stack: ... ⇒ ..., result:boolean
Reference stack: ..., object ⇒ ...
Description: Evaluates whether object is an instance of
the class pointed to by the local ID (infusion_id,
entity_id).

INVOKEINTERFACE
Opcode: 157 (0x9d)
Format: invokeinterface, infusion_id, entity_id
Integer stack: ..., [arg]* ⇒ ...
Reference stack: ..., [arg]* ⇒ ...
Description: Invokes an interface method, pointed to by
the local ID (infusion_id, entity_id), on object.

INVOKESPECIAL
Opcode: 155 (0x9b)
Format: invokespecial, infusion_id, entity_id
Integer stack: ..., [arg]* ⇒ ...
Reference stack: ..., object, [arg]* ⇒ ...
Description: Invokes a static method, pointed to by the
local ID (infusion_id, entity_id), with object as a first
reference argument. Used for calling constructors
mostly.

INVOKESTATIC
Opcode: 156 (0x9c)
Format: invokestatic, infusion_id, entity_id
Integer stack: ..., [arg]* ⇒ ...
Reference stack: ..., [arg]* ⇒ ...
Description: Invokes a static method, pointed to by the
local ID (infusion_id, entity_id)

INVOKEVIRTUAL
Opcode: 154 (0x9a)
Format: invokevirtual, infusion_id, entity_id
Integer stack: ..., [arg]* ⇒ ...
Reference stack: ..., object, [arg]* ⇒ ...
Description: Invokes a virtual method, pointed to by the
local ID (infusion_id, entity_id), on object.

IOR
Opcode: 117 (0x75)
Format: ior
Integer stack: ..., value2 :int, value1 :int ⇒ ...,
result:int
Description: Pops two int values from the operand
stack as value1 and value2 . The result value1 | value2 is
pushed onto the integer stack as a int. Note that any
potential overflow is discarded.

IPOP
Opcode: 62 (0x3e)
Format: ipop
Integer stack: ..., value1:short ⇒ ...

Description: Pops a value of type short off the integer
stack.

IPOP2
Opcode: 63 (0x3f)
Format: ipop2
Integer stack: ..., value1:int ⇒ ...
Integer stack: ..., value2:short , value1:short ⇒ ...

Description: Depending on the state of the stack, either
pops a value of type int off the integer stack, or pops
two values of type short off the integer stack.

IREM
Opcode: 111 (0x6f)
Format: irem
Integer stack: ..., value2 :int, value1 :int ⇒ ...,
result:int
Description: Pops two int values from the operand
stack as value1 and value2 . The result value1 % value2
is pushed onto the integer stack as a int. Note that any
potential overflow is discarded.

IRETURN
Opcode: 151 (0x97)
Format: ireturn
Integer stack: ..., value:short ⇒ ...

Description: Exists the current method, returning a
value of type int.

58



ISHL
Opcode: 113 (0x71)
Format: ishl
Integer stack: ..., value2 :int, value1 :int ⇒ ...,
result:int
Description: Pops two int values from the operand
stack as value1 and value2 . The result value1 << value2
is pushed onto the integer stack as a int. Note that any
potential overflow is discarded.

ISHR
Opcode: 114 (0x72)
Format: ishr
Integer stack: ..., value2 :int, value1 :int ⇒ ...,
result:int
Description: Pops two int values from the operand
stack as value1 and value2 . The result value1 >> value2
is pushed onto the integer stack as a int. Note that any
potential overflow is discarded.

ISTORE
Opcode: 42 (0x2a)
Format: istore, slot_nr
Integer stack: ..., value:int ⇒ ...

Description: Pops an int value from the integer stack
and stores it in the integer local variable pool at index
slot_nr

ISTORE_0
Opcode: 43 (0x2b)
Format: istore_0
Integer stack: ..., value:int ⇒ ...

Description: Pops an int value from the integer stack
and stores it in the integer local variable pool at index 0

ISTORE_1
Opcode: 44 (0x2c)
Format: istore_1
Integer stack: ..., value:int ⇒ ...

Description: Pops an int value from the integer stack
and stores it in the integer local variable pool at index 1

ISTORE_2
Opcode: 45 (0x2d)
Format: istore_2
Integer stack: ..., value:int ⇒ ...

Description: Pops an int value from the integer stack
and stores it in the integer local variable pool at index 2

ISTORE_3
Opcode: 46 (0x2e)
Format: istore_3
Integer stack: ..., value:int ⇒ ...

Description: Pops an int value from the integer stack
and stores it in the integer local variable pool at index 3

ISUB
Opcode: 108 (0x6c)
Format: isub
Integer stack: ..., value2 :int, value1 :int ⇒ ...,
result:int
Description: Pops two int values from the operand
stack as value1 and value2 . The result value1 - value2 is
pushed onto the integer stack as a int. Note that any
potential overflow is discarded.

ISWAP_X
Opcode: 67 (0x43)
Format: iswap_x, indexbyte
Integer stack: Depends on the values of m and n
Description: Two 4-bit parameters m and n are encoded
in indexbyte. The parameter m is stored in the high
nibble, n is stored in the low nibble. The instruction
takes the top m slots on the integer stack and swaps them
with the n underlying slots.

IUSHR
Opcode: 115 (0x73)
Format: iushr
Integer stack: ..., value2 :int, value1 :int ⇒ ...,
result:int
Description: Pops two int values from the operand
stack as value1 and value2 . The result value1 >>> value2
(logical shift right) is pushed onto the integer stack as a
int. Note that any potential overflow is discarded.

IXOR
Opcode: 118 (0x76)
Format: ixor
Integer stack: ..., value2 :int, value1 :int ⇒ ...,
result:int
Description: Pops two int values from the operand
stack as value1 and value2 . The result value1 ^ value2 is
pushed onto the integer stack as a int. Note that any
potential overflow is discarded.
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LDS
Opcode: 21 (0x15)
Format: lds, infusion_id, entity_id
Reference stack: ..., ⇒ ..., stringref
Description: The local id (infusion_id, entity_id) points
to a string table entry which is loaded and pushed onto
the reference stack.

LOOKUPSWITCH
Opcode: 149 (0x95)
Format: lookupswitch, default address,
num_pairs:short, jump table...
Integer stack: ..., value:int ⇒ ...

Description: The jump table consists of key/value pairs
in the form of an key:int value and a branch target. If
value matches one of the keys, this instruction branches
to the corresponding branch target. Otherwise the
instruction branches to the default address.

MONITORENTER
Opcode: 164 (0xa4)
Format: monitorenter
Reference stack: ..., object ⇒ ...
Description: Enters a critical section with object as a
monitor.

MONITOREXIT
Opcode: 165 (0xa5)
Format: monitorexit
Reference stack: ..., object ⇒ ...
Description: Exits a critical section with object as a
monitor.

NEW
Opcode: 158 (0x9e)
Format: new, infusion_id, entity_id
Reference stack: ..., ⇒ ..., object
Description: Creates a new instance of the class pointed
to by the local ID (infusion_id, entity_id).

NEWARRAY
Opcode: 159 (0x9f)
Format: anewarray, array_type
Reference stack: ..., ⇒ ..., array
Description: Creates a new array of type array_type
(byte, char, boolean, short, int, etc).

NOP
Opcode: 0 (0x00)
Format: nop
Integer stack: No Change
Reference stack: No Change
Description: No operation

PUTFIELD_A
Opcode: 84 (0x54)
Format: putfield_a, indexbyte
Reference stack: ..., objectref, value ⇒ ...
Description: Sets the value of the byte field in object
objectref at immediate index offsetbyte

PUTFIELD_B
Opcode: 80 (0x50)
Format: putfield_b, offsetbyte
Integer stack: ..., value:short ⇒ ...
Reference stack: ..., objectref ⇒ ...
Description: Sets the value of the byte field in object
objectref at immediate offset offsetbyte

PUTFIELD_C
Opcode: 81 (0x51)
Format: putfield_c, offsetbyte
Integer stack: ..., value:short ⇒ ...
Reference stack: ..., objectref ⇒ ...
Description: Sets the value of the char field in object
objectref at immediate offset offsetbyte

PUTFIELD_I
Opcode: 83 (0x53)
Format: putfield_i, offsetbyte
Integer stack: ..., value:int ⇒ ...
Reference stack: ..., objectref ⇒ ...
Description: Sets the value of the int field in object
objectref at immediate offset offsetbyte

PUTFIELD_S
Opcode: 82 (0x52)
Format: putfield_s, offsetbyte
Integer stack: ..., value:short ⇒ ...
Reference stack: ..., objectref ⇒ ...
Description: Sets the value of the short field in object
objectref at immediate offset offsetbyte
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PUTSTATIC_A
Opcode: 94 (0x5e)
Format: putstatic_a, infusion_id, indexbyte
Reference stack: ..., value:reference ⇒ ...

Description: Sets the value of reference static
variable in the infusion indicated by infusion_id at index
indexbyte

PUTSTATIC_B
Opcode: 90 (0x5a)
Format: putstatic_b, infusion_id, indexbyte
Integer stack: ..., value:short ⇒ ...

Description: Sets the value of byte static variable in
the infusion indicated by infusion_id at index indexbyte

PUTSTATIC_C
Opcode: 91 (0x5b)
Format: putstatic_c, infusion_id, indexbyte
Integer stack: ..., value:short ⇒ ...

Description: Sets the value of char static variable in
the infusion indicated by infusion_id at index indexbyte

PUTSTATIC_I
Opcode: 93 (0x5d)
Format: putstatic_i, infusion_id, indexbyte
Integer stack: ..., value:int ⇒ ...

Description: Sets the value of int static variable in the
infusion indicated by infusion_id at index indexbyte

PUTSTATIC_S
Opcode: 92 (0x5c)
Format: putstatic_s, infusion_id, indexbyte
Integer stack: ..., value:short ⇒ ...

Description: Sets the value of short static variable in
the infusion indicated by infusion_id at index indexbyte

RETURN
Opcode: 153 (0x99)
Format: return
Description: Exists the current method.

S2B
Opcode: 122 (0x7a)
Format: s2b
Integer stack: ..., value:short ⇒ ..., value:byte
Description: Narrows a value of type short to byte.

S2C
Opcode: 170 (0xaa)
Format: s2c
Integer stack: ..., value:short ⇒ ..., value:char
Description: Narrows a value of type short to char.

S2I
Opcode: 123 (0x7b)
Format: s2i
Integer stack: ..., value:short ⇒ ..., value:int
Description: Widens a value of type short to int.

SADD
Opcode: 95 (0x5f)
Format: sadd
Integer stack: ..., value2 :short, value1 :short ⇒ ...,
result:short
Description: Pops two short values from the operand
stack as value1 and value2 . The result value1 + value2 is
pushed onto the integer stack as a short. Note that any
potential overflow is discarded.

SALOAD
Opcode: 54 (0x36)
Format: saload
Integer stack: ..., index:short ⇒ ..., value:short
Reference stack: ..., arrayref ⇒ ...
Description: Retrieves a short from an array at index
index and pushes it onto the integer stack. The index and
arrayref are popped from the integer- and reference
stack respectively.
Exceptions: Throws NullPointerException if
arrayref is null. Throws
IndexOutOfBoundsException if index is not a
valid index.

SAND
Opcode: 104 (0x68)
Format: sand
Integer stack: ..., value2 :short, value1 :short ⇒ ...,
result:short
Description: Pops two short values from the operand
stack as value1 and value2 . The result value1 & value2 is
pushed onto the integer stack as a short. Note that any
potential overflow is discarded.
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SASTORE
Opcode: 59 (0x3b)
Format: sastore
Integer stack: ..., index:short , value:short ⇒ ...
Reference stack: ..., arrayref ⇒ ...
Description: Pops a short value from the stack and
stores it in array arrayref at index index. The index and
value are popped from the integer stack, the arrayref is
popped from the reference stack.
Exceptions: Throws NullPointerException if
arrayref is null. Throws
IndexOutOfBoundsException if index is not a
valid index.

SCMPEQ
Opcode: 134 (0x86)
Format: scmpeq, branch_adress
Integer stack: ..., value2 :short, value1 :short ⇒ ...

Description: Branch if value2 equals value1 .

SCMPGE
Opcode: 137 (0x89)
Format: scmpge, branch_adress
Integer stack: ..., value2 :short, value1 :short ⇒ ...

Description: Branch if value2 greater than or equals
value1 .

SCMPGT
Opcode: 138 (0x8a)
Format: scmpgt, branch_adress
Integer stack: ..., value2 :short, value1 :short ⇒ ...

Description: Branch if value2 greater than value1 .

SCMPLE
Opcode: 139 (0x8b)
Format: scmple, branch_adress
Integer stack: ..., value2 :short, value1 :short ⇒ ...

Description: Branch if value2 less than or equals value1
.

SCMPLT
Opcode: 136 (0x88)
Format: scmplt, branch_adress
Integer stack: ..., value2 :short, value1 :short ⇒ ...

Description: Branch if value2 less than value1 .

SCMPNE
Opcode: 135 (0x87)
Format: scmpne, branch_adress
Integer stack: ..., value2 :short, value1 :short ⇒ ...

Description: Branch if value2 not equals value1 .

SCONST_0
Opcode: 2 (0x02)
Format: sconst_0
Integer stack: ..., ⇒ ..., 0:short
Description: Push short constant 0 onto the integer
stack

SCONST_1
Opcode: 3 (0x03)
Format: sconst_1
Integer stack: ..., ⇒ ..., 1:short
Description: Push short constant 1 onto the integer
stack

SCONST_2
Opcode: 4 (0x04)
Format: sconst_2
Integer stack: ..., ⇒ ..., 2:short
Description: Push short constant 2 onto the integer
stack

SCONST_3
Opcode: 5 (0x05)
Format: sconst_3
No Change
Description: No operation
Integer stack: ..., ⇒ ..., 3:short
Description: Push short constant 3 onto the integer
stack

SCONST_4
Opcode: 6 (0x06)
Format: sconst_4
Integer stack: ..., ⇒ ..., 4:short
Description: Push short constant 4 onto the integer
stack

SCONST_5
Opcode: 7 (0x07)
Format: sconst_5
Integer stack: ..., ⇒ ..., 5:short
Description: Push short constant 5 onto the integer
stack
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SCONST_M1
Opcode: 1 (0x01)
Format: sconst_m1
Integer stack: ..., ⇒ ..., -1:short
Description: Push short constant -1 onto the integer
stack

SDIV
Opcode: 98 (0x62)
Format: sdiv
Integer stack: ..., value2 :short, value1 :short ⇒ ...,
result:short
Description: Pops two short values from the operand
stack as value1 and value2 . The result value1 / value2 is
pushed onto the integer stack as a short. Note that any
potential overflow is discarded.

SINC
Opcode: 120 (0x78)
Format: sinc, slot_nr, increase:byte
Description: Increases local variable of type short at
index slot_nr by increase

SINC_W
Opcode: 168 (0xa8)
Format: sinc_w, slot_nr, increase:short
Description: Increases local variable of type int at
index slot_nr by increase

SIPUSH
Opcode: 19 (0x13)
Format: bspush, valuebyte1
Integer stack: ..., ⇒ ..., (valuebyte2<<8 +
valuebyte1):int
Description: Widen immediate short value
(valuebyte2 <<8 + valuebyte1 ) to type int and push
onto the integer stack

SLOAD
Opcode: 22 (0x16)
Format: sload, slot_nr
Integer stack: ..., ⇒ ..., value:short
Description: Loads a short value from the integer
local variable pool at slot index slot_nr and pushes it
onto the stack

SLOAD_0
Opcode: 23 (0x17)
Format: sload_0
Integer stack: ..., ⇒ ..., value:short
Description: Loads a short value from the integer
local variable pool at slot index 0 and pushes it onto the
stack

SLOAD_1
Opcode: 24 (0x18)
Format: sload_1
Integer stack: ..., ⇒ ..., value:short
Description: Loads a short value from the integer
local variable pool at slot index 1 and pushes it onto the
stack

SLOAD_2
Opcode: 25 (0x19)
Format: sload_2
Integer stack: ..., ⇒ ..., value:short
Description: Loads a short value from the integer
local variable pool at slot index 2 and pushes it onto the
stack

SLOAD_3
Opcode: 26 (0x1a)
Format: sload_3
Integer stack: ..., ⇒ ..., value:short
Description: Loads a short value from the integer
local variable pool at slot index 3 and pushes it onto the
stack

SMUL
Opcode: 97 (0x61)
Format: smul
Integer stack: ..., value2 :short, value1 :short ⇒ ...,
result:short
Description: Pops two short values from the operand
stack as value1 and value2 . The result value1 * value2 is
pushed onto the integer stack as a short. Note that any
potential overflow is discarded.

SNEG
Opcode: 100 (0x64)
Format: sneg
Integer stack: ..., value1 :short ⇒ ..., result:short
Description: Negates the top short element on the
integer stack. Note that any potential overflow is
discarded.
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SOR
Opcode: 105 (0x69)
Format: sor
Integer stack: ..., value2 :short, value1 :short ⇒ ...,
result:short
Description: Pops two short values from the operand
stack as value1 and value2 . The result value1 | value2 is
pushed onto the integer stack as a short. Note that any
potential overflow is discarded.

SREM
Opcode: 99 (0x63)
Format: srem
Integer stack: ..., value2 :short, value1 :short ⇒ ...,
result:short
Description: Pops two short values from the operand
stack as value1 and value2 . The result value1 % value2
is pushed onto the integer stack as a short. Note that
any potential overflow is discarded.

SRETURN
Opcode: 150 (0x96)
Format: sreturn
Integer stack: ..., value:short ⇒ ...

Description: Exists the current method, returning a
value of type short.

SSHL
Opcode: 101 (0x65)
Format: sshl
Integer stack: ..., value2 :short, value1 :short ⇒ ...,
result:short
Description: Pops two short values from the operand
stack as value1 and value2 . The result value1 << value2
is pushed onto the integer stack as a short. Note that
any potential overflow is discarded.

SSHR
Opcode: 102 (0x66)
Format: sshr
Integer stack: ..., value2 :short, value1 :short ⇒ ...,
result:short
Description: Pops two short values from the operand
stack as value1 and value2 . The result value1 >> value2
is pushed onto the integer stack as a short. Note that
any potential overflow is discarded.

SSPUSH
Opcode: 18 (0x12)
Format: sspush, valuebyte2 , valuebyte1
Integer stack: ..., ⇒ ..., (valuebyte2<<8 +
valuebyte1):short
Description: Push immediate short value (valuebyte2
<<8 + valuebyte1 ) onto the integer stack

SSTORE
Opcode: 37 (0x25)
Format: sstore, slot_nr
Integer stack: ..., value:short ⇒ ...

Description: Pops a short value from the integer stack
and stores it in the integer local variable pool at index
slot_nr

SSTORE_0
Opcode: 38 (0x26)
Format: sstore_0
Integer stack: ..., value:short ⇒ ...

Description: Pops a short value from the integer stack
and stores it in the integer local variable pool at index 0

SSTORE_1
Opcode: 39 (0x27)
Format: sstore_1
Integer stack: ..., value:short ⇒ ...

Description: Pops a short value from the integer stack
and stores it in the integer local variable pool at index 1

SSTORE_2
Opcode: 40 (0x28)
Format: sstore_2
Integer stack: ..., value:short ⇒ ...

Description: Pops a short value from the integer stack
and stores it in the integer local variable pool at index 2

SSTORE_3
Opcode: 41 (0x29)
Format: sstore_3
Integer stack: ..., value:short ⇒ ...

Description: Pops a short value from the integer stack
and stores it in the integer local variable pool at index 3
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SSUB
Opcode: 96 (0x60)
Format: ssub
Integer stack: ..., value2 :short, value1 :short ⇒ ...,
result:short
Description: Pops two short values from the operand
stack as value1 and value2 . The result value1 - value2 is
pushed onto the integer stack as a short. Note that any
potential overflow is discarded.

SUSHR
Opcode: 103 (0x67)
Format: sushr
Integer stack: ..., value2 :short, value1 :short ⇒ ...,
result:short
Description: Pops two short values from the operand
stack as value1 and value2 . The result value1 >>> value2
(logical shift right) is pushed onto the integer stack as a
short. Note that any potential overflow is discarded.

SXOR
Opcode: 106 (0x6a)
Format: sxor
Integer stack: ..., value2 :short, value1 :short ⇒ ...,
result:short
Description: Pops two short values from the operand
stack as value1 and value2 . The result value1 ^ value2 is
pushed onto the integer stack as a short. Note that any
potential overflow is discarded.

TABLESWITCH
Opcode: 148 (0x94)
Format: tableswitch, default address, low:int,
high:int, jump table...
Integer stack: ..., value:int ⇒ ...

Description: Jump table switch. The jump table contains
high-low branch targets, plus one 'default' branch target.
When value is in [low-high] this instruction branches to
the corresponding address, and branches to the 'default'
address otherwise.
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