
Demo Abstract: A Java Compatible Virtual Machine for
Wireless Sensor Nodes

Niels Brouwers
Delft University of Technology

The Netherlands
n.brouwers@

student.tudelft.nl

Peter Corke
Autonomous Systems

Laboratory
CSIRO ICT Centre, Australia.

peter.corke@csiro.au

Koen Langendoen
Delft University of Technology

The Netherlands
k.g.langendoen@tudelft.nl

ABSTRACT
The Java programming language has potentially significant
advantages for wireless sensor nodes but there is currently
no feature-rich, open source virtual machine available. In
this paper we present Darjeeling, a system comprising of-
fline tools and a memory efficient run-time. The offline post-
compiler tool analyzes, links and consolidates Java class files
into loadable modules. The runtime implements a modi-
fied Java VM that supports multithreading and is designed
specifically to operate in constrained execution environments
such as wireless sensor network nodes and supports inher-
itance, threads, garbage collection, and loadable modules.
We have demonstrated Java running on AVR128 and MSP430
microcontrollers at speeds of up to 70,000 JVM instructions
per second.

Categories and Subject Descriptors
D.1.5 [Object-oriented Programming]: Miscellaneous

General Terms
Languages

Keywords
Java, sensor network

1. INTRODUCTION
Virtual machines (VMs) are a well known and powerful

means of abstracting underlying computer hardware from
an application, allowing portability across platforms without
recompilation. For sensor networks they provide a solution
to challenges such as fault tolerance, total cost of owerner-
ship and heterogeneity. Sensor nodes have no user interface,
cannot be conveniently reset, typically lack memory man-
agement hardware yet must run autonomously. Virtual ma-
chines provide strong checking, memory management and
error handling services that improve robustness and allow
software faults to be handled appropriately before they be-
come failures.

The total cost of ownership (TCO) includes not only the
price of hardware, but other costs such as software devel-
opment, software and hardware maintenance, testing and
cost of failures. Virtual machines may help to cut costs in

Copyright is held by the author/owner(s).
SenSys’08, November 5–7, 2008, Raleigh, North Carolina, USA.
ACM 978-1-59593-990-6/08/11.

Figure 1: Infusion process

the areas of software development and testing. This effect
can be contributed to a number of factors, such as increased
maintainability and productivity [1].

Large sensor networks deployed for long periods of time
will face the problem of obsolescence. Virtual machines al-
low nodes to be replaced with different hardware yet still be
able to run the original applications and relieve programmers
from having to deal with this diversity. A virtual machine
solves this problem by providing one execution model that
is universal to all node platforms.

Growing interest in Java virtual machines for Wireless
Sensor Networks (WSNs), reflected by recent efforts like [2,
3], shows a need for a more flexible and accessible program-
ming abstraction. At the time of writing Java is one of the
most popular programming languages. This gives Java a
significant advantage over other alternatives in terms of ac-
cessibility, integration with other network components and
availability of tools such as IDEs and compilers, not to men-
tion programmers.

On the technical side, the execution model of a Java vir-
tual machine has numerous advantages over native code.
Stack frames are allocated on the heap in an ad hoc man-
ner so threads can be very light-weight. The Java language
and its compiler guarantee type safety, and common pro-
gramming errors such as buffer overflows and null pointers
are caught at runtime. Unreachable memory is automat-
ically reclaimed by the garbage collector, greatly reducing
memory leaks.

In this demonstration we will show a new virtual machine
and toolchain that allows a significant subset of the Java
language to execute on a microcontroller of the MSP430 or
Atmega 128 class.

369

Table 1: Performance comparison

Application C Java VM Instr. Instr/sec AVR/VM Java/Native
Worst-case bubble sort 0.74s 72s 5,134,766 71,316 112.18 97.30
8x8 Vector Convolution 2.97s 421s 28,650,085 68,052 117.56 141.75

Figure 2: Resolving a method reference

2. DARJEELING
A sensor node applications spend most of its lifetime in

sleep mode, periodically executing small segments of code.
Execution speed is typically not important which has led
us to actively trade off clockcycles for bytes on the heap,
the opposite of optimizations found in desktop and mobile
JVMs.

When designing our Darjeeling Virtual Machine (DVM)
we have chosen not to implement the full Java virtual ma-
chine specification. Instead we have taken a subset and ap-
plied modifications to the memory layout and instruction
set. The bytecode emitted by the Java compiler is post-
processed by the Darjeeling toolchain into Darjeeling byte-
code. Of the 227 original instructions we kept 94, modified
6, and introduced 22 new ones, bringing the total number
of opcodes in the DVM to 122. Important tradeoffs have
been compatibility, features, and performance versus code
complexity and memory usage.

Darjeeling does not support the full standard class li-
braries, but rather provides a small footprint, bare-essentials
system module (’infusion’).

2.1 Linking model
In Java, every class is treated as a dynamically linked,

loadable module. Entities, such as fields or methods, are
referenced by name, and these names are stored as string
values in the class files. While this model is very flexible and
allows for code updates on a per-class basis, it is also very
costly in terms of storage and in terms of radio transmission
time and energy.

To achieve a small code footprint while ensuring modular-
ity, Darjeeling uses a model where groups of classes are stati-
cally linked into loadable modules called infusions. Infusions
may reference each other, can be loaded and unloaded at run
time, and support versioning. Other embedded JVMs have
also implemented a static linking, eg. [4].

The process is illustrated in Figure 1. The Java class files
that make up the application or library are input to the
infuser, along with the header files of imported infusions.
The output consists of two files, a Darjeeling infusion file
(.di) that contains the actual bytecode and a Darjeeling
infusion header (.dih) that contains a mapping between the
original Java entity names and the generated identifiers.

The identifiers that are found in the .di files are called
local IDs and consist of two parts, a local infusion ID and an

entity ID. The first element refers to an item in the import
list of an infusion. The second element refers to an entity
within that imported infusion. Local IDs are stored as a
two-byte tuple. Figure 2 shows how a method is resolved
at runtime. In this example a method inside the ‘motor’
infusion is called from the ‘car’ infusion. First, the local
ID is partially resolved into a global ID by looking up the
infusion in the import list. A global ID is a tuple of a pointer
to a loaded infusion, and an entity ID. The method itself can
now be retrieved from the infusion’s method list.

2.2 Memory model
Java is in its core a 32-bit virtual machine. Most applica-

tions can use short instead of int for counters, temporary
variables and so forth. Ideally variables of type byte or
short should only occupy 1 or 2 bytes respectively instead
of 4. Darjeeling packs the fields of objects on the heap, with
references being separated from integer fields to help with
garbage collection. A similar method is used to pack static
fields, which are allocated on the heap as a part of the loaded
infusion.

Darjeeling uses a simple mark & sweep garbage collector.
We chose this algorithm because of its simplicity, and be-
cause it does not move objects. This allows allocated Java
objects to coexist with native objects such as stack frames.
A downside is that non-compacting collectors typically cause
fragmentation on the heap.

3. RESULTS
We evaluate performance with two applications and the

results are shown in Table 1. The Bubblesort app is a stan-
dard O(1

2
n

2) sorting algorithm, which we tested with an
array of 500 values in reverse order (worst case). We also
tested an 8×8 vector convolution executed 10,000 times. Ap-
plications were written in both Java and C and timed on an
ATmega128 running at 8MHz. The compilers were GCC
4.2.1 for AVR and the Eclipse built-in Java compiler. The
Java/Native ratio quantifies the performance overhead of
Java over C. The tests show a performance of about 70,000
JVM instructions per second on these tests.

4. REFERENCES
[1] Butters, A. M. (2007): Total Cost of Ownership: A

Comparison of C/C++ and Java. Evans Data Corp,
www.evansdata.com

[2] B. Saballus et. al.: Towards a Distributed Java VM in
Sensor Networks using Scalable Source Routing

[3] Koshy, J., Pandey, R. (2005): VMSTAR: synthesizing
scalable runtime environments for sensor networks. In
SenSys ’05: Proceedings of the 3rd international
conference on Embedded networked sensor systems, pp.
243-254, New York, NY, USA. ACM.

[4] http://www.harbaum.org/till/nanovm

370

